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1 Glossary

Table 1: Terms and definitions
Term Definition ‘
Allocation (aka | Task allocation refers to the decision of task placement and scheduling associated

task allocation)

Application
migration

Architecture

Architecture
framework

Cloud
migration

Component

Computing
platform

Concept
Cyber-Physical
System

Device

Digital twin

Version
V1.0

service

with the resource management.

Application migration is the process of moving a software application from one
computing environment to another. You might, for instance, migrate an application
from one data centre to another, from an on-premises server to a cloud provider’s
environment, or from the public cloud to a private cloud environment.

The fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principles guiding its
design and evolution.

Conventions, principles and practices for the description of architectures established
within a specific domain of application and/or community of stakeholders.

[Cloud] service migration is a concept used in cloud computing implementation
models that ensures that an individual or organization can easily shift between
different cloud vendors without encountering

implementation, integration,

compatibility and interoperability issues.
One of the parts that make up a system.

A computing platform is the environment in which a piece of software is executed. It
may be the hardware or the operating system (0S), even a web browser and
associated application programming interfaces, or other underlying software, as long
as the program code is executed with it. Computing platforms have different
abstraction levels, including a computer architecture, an OS, process containers, or
runtime libraries. A computing platform is the stage on which computer programs
can run.

An abstraction; a general idea inferred or derived from specific instances.

Digital system that semi-automatically interacts with its physical environment as
integral part of its functionality. It integrates computation with physical processes,
where system properties are determined by both cyber and physical parts.

Physical entity embedded inside, or attached to, another physical entity in its vicinity,
with capabilities to convey digital information from or to that physical entity.

A digital twin is a digital model of an actual physical system, which has a “live”
connection (digital thread) with the physical system, so that it represents its actual
status, and is used to derive a higher-level representation of the system’s status and

performance.
Nature / Level Date Page
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Edge Computing Edge computing is a new architectural paradigm in which the resources of an edge
server are placed at the edge of the Internet, in close proximity to cyber-physical
systems, mobile devices, sensors and loT endpoints.

Framework A framework is an abstraction in which “engineering bricks” providing generic
functionality can be selectively changed by system engineers, thus providing
application-specific solutions. It provides a standard way to build and deploy CPS.

Industry 4.0 Industry 4.0 is a name given to the current trend of automation and data exchange
in manufacturing technologies. It includes cyber-physical systems, the Internet of
Things, cloud computing and cognitive computing. Industry 4.0 is commonly referred
to as the fourth industrial revolution.

Mechanism An established process by which something takes place or is brought about.

Method A method consists of systematic steps for performing a task, in other words, it defines
the “how” of each task.

Methodology A collection of related formalisms, techniques, processes, methods, and tools. A
methodology is essentially a “recipe” and can be thought of as the application of
related processes, methods, and tools to a class of problems that all have something
in common.

Middleware Middleware is computer software that provides services to software applications
beyond those available from the operating system. It can be described as “software
glue”. Middleware makes it easier for software developers to implement
communication and input/output, so they can focus on the specific purpose of their

application.
Mission-critical A mission-critical system is a system that is essential to the survival of a business or
system organization. When a mission-critical system fails or is interrupted, business

operations are significantly impacted.

Mixed-criticality A system containing computer hardware and software that can execute several

system applications of different criticality, such as safety-critical and non-safety-critical, or of
different Safety Integrity Level (SIL). Different criticality applications are engineered
to different levels of assurance, with high criticality applications being the costliest
to design and verify.

Offloading  (aka | Computation offloading is the transfer of resource intensive computational tasks to

computation  or | a separate processor, such as a hardware accelerator, or an external platform, such

task offloading) as a cluster, grid, or a cloud. Offloading computing to an external platform over a
network can provide computing power and overcome hardware limitations of a
device, such as limited computational power, storage, and energy.

Orchestration Type of composition where one particular element is used by the composition to
oversee and direct the other elements.

Version Nature / Level Date Page
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Note: The element that directs an orchestration is not part of the orchestration.

Partitioning  (aka | Divides the application code into several parts that will be executed on different

application or | platforms, I.e., mobile devices, cloudlets, or the cloud.
code partitioning)

Platform A collection of interoperable system “engineering bricks” that can be used to set up
a system engineering environment in a company. A technology or engineering brick
can be: a software tool/product, a software component to build a software
tool/product, a system engineering methodology, an interface, a standard, or means
for establishing interoperability that is needed for the efficient development of
safety-critical embedded systems.

Process A process is a logical sequence of tasks performed to achieve a particular objective.
A process defines “what” is to be done, without specifying “how” each task is
performed.

Reference

A Reference Architecture (RA) is an architectural design pattern that indicates how
Architecture an abstract set of mechanisms and relationships realizes a predetermined set of
requirements. It captures the essence of the architecture of a collection of systems.
The main purpose of a Reference Architecture is to provide guidance for the
development of architectures. One or more reference architectures may be derived
from a common reference model, to address different purposes/usages to which the
Reference Model may be targeted.
Reference Model ' A reference model is an abstract framework for understanding significant
relationships among the entities of some environment. It enables the development
of specific reference or concrete architectures using consistent standards or
specifications supporting that environment. A reference model consists of a minimal
set of unifying concepts, axioms and relationships within a particular problem
domain, and is independent of specific standards, technologies, implementations, or
other concrete details. A reference model may be used as a basis for education and
explaining standards to non- specialists.
Safety-critical CPS | A safety-critical CPS is a cyber-physical system where the failure or malfunction may
result in one (or more) of the following outcomes: death or serious injury to people,
loss or severe damage to equipment/property, environmental harm.
Safety-critical A system whose failure or malfunction may result in one (or more) of the following
system outcomes: death or serious injury to people, loss or severe damage to
equipment/property, environmental harm.

Service Services are the mechanism by which needs and capabilities are brought together.

Service migration | pynamically moving (migrating) the service (or task) from one processing element to

another at runtime.

Version Nature / Level Date Page
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Software
component

Software
framework

Solution

System

System
component

Technique

Tool

An independent software unit that communicates with the surrounding system
through explicitly specified interfaces.

In computer programming, a software framework is an abstraction in which software
providing generic functionality can be selectively changed by additional user-written
code, thus providing application-specific software. It provides a standard way to build
and deploy applications and is a universal, reusable software environment that
provides a particular functionality as part of a larger software platform to facilitate
development of software applications, products and solutions. Software frameworks
may include support programs, compilers, code libraries, tool sets, and application
programming interfaces (APls) that bring together all the different components to
enable development of a project or system.

A means of solving a problem or dealing with a difficult situation.

A combination of interacting elements organized to achieve one or more stated
purposes.

A system architectural element.

Technical and managerial procedure that aids in the evaluation and improvement of
the [system] development process.

A tool is an instrument that, when applied to a particular method, can enhance the

efficiency of the task; provided it is applied properly and by somebody with proper
skills and training.

Table 2: Abbreviations and definitions

Term Definition

Al
B/L/O

BMS
Cl
CcD
CPA

CPS

CcT

Version
V1.0

Artificial Intelligence
Business, Legal, Operational aspects

Battery Management System
Continuous Integration
Continuous Delivery

Composite Performance Analysis

Cyber-Physical Systems

Computed Tomography

Nature / Level Date Page
R/PU 30/05/2024 11 of 62



D38 (D2.3) Techniques and Methodology toDAg:SIyse and Transformation towards |

TRANSACT

DES Discrete Event Simulation
DICOM Digital Imaging and Communications in Medicine
DSL Domain-Specific Language
laaS Infrastructure as a Service
IGT Image-Guided Therapy
loT Internet of Things
MDE Model-Driven Engineering
MRI Magnetic Resonance Imaging
M&S Modelling and Simulation
PaaS Platform as a Service
PACS Picture Archiving and Communications System
QoS Quality of Service
SLA Service Level Agreement
SLO Service Level Objective
RA Reference Architecture
RTAT Report Turn-Around Time
SCDCPS Safety-Critical Distributed Cyber-Physical System
T&V Transition & Validation
WWTP Wastewater Treatment Plant
Version Nature / Level Date - Page

V1.0 R/PU 30/05/2024 12 of 62



D38 (D2.3) Techniques and Methodology toDAg:SIyse and Transformation towards |

TRANSACT

2 Introduction

2.1 Role of this deliverable

This deliverable relates to Task 2.3 - “Trade-off analysis and transformation of classic solutions into
distributed safety-critical CPS solutions” of Work Package 2 (WP2) - “Distributed solution architectures and
platforms for safety critical CPS”. The main objective of this Work Package is the design and creation of the
TRANSACT reference architecture. The structure of the work revolves around three main tasks: developing
the reference architecture (Task 2.1), creating methodologies for designing and evaluating distributed Cyber-
Physical Systems (CPS) (Task 2.2), and transforming traditional CPS into distributed systems while considering
associated trade-offs and general development processes (Task 2.3).

The activities in Task 2.3 are focussing on three key aspects:

o Trade-off analyses for the distribution of functionality to find sweet spots in the decision which
functions are best performed in the cloud, edge, or on-device tier of the TRANSACT architecture.

e Strategies supporting the transition, with a focus on general software design principles supporting
a transition towards a distributed solution while at the same time enabling the capability to
guarantee certain system functionality.

e Generic development processes reaching from top-level system design down to hardware/software
architecture design.

In this deliverable, resulting from Task 2.3, methodologies and techniques facilitating the shift from classical
CPS to distributed CPS solutions are presented and discussed. This encompasses techniques for analysing and
optimizing function allocation, as well as for design comparison. Drawing on the work of the TRANSACT
partners in the individual use-cases, the contributions cover a wide range of topics from Model-Driven
Engineering of CPS, to optimized function distribution using Discrete Event Simulation, to service models for
the management of cloud applications. Consequently, the contributions address different aspects of the
overall task objectives. As visualized in Table 3, the objectives are evenly covered by the work areas
addressed by the partners.

Table 3: Overview of how the techniques and methodologies discussed in each partner’s contribution are
linked to the objectives of Task 2.3

Trade-off analysis Strategies Development process

uoc X X
VIN X X

AVL X
PMS X X
PST X X

PFLH X

ITl X X
KUM X X
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2.2 Relationship to other TRANSACT deliverables

This document relates to the following TRANSACT deliverables:

e The TRANSACT reference architecture for SCDCPS is presented in D7 (D2.1) and D26 (D2.4). The
reference architecture represents the basis for the investigations of transition techniques and
methodologies presented in this report.

e The simulation and validation approaches presented in D27 (D2.2) are closely linked to the trade-off
analyses described here.

e D6 (D1.2) reports about the technical requirements per use case and common methodology to
support the transformation.

e The transition guide to facilitate safety-critical distributed CPS solutions (D23 (D1.3) and D36 (D1.5))
describes the transition methodology framework with respect to TRANSACT focus areas and cross-
cutting aspects. The transition methods in many of these aspects are supported by analysis and
simulation approaches detailed in this document.

e As system performance is a key element of the trade-off analysis described in this deliverable, the
performance modelling and prediction technologies detailed in D33 (D3.5) can also be employed for
the purpose of trade-off simulation and sweet-spot identification.

2.3 Modelling and Analysing DCPS

In order to transform CPS into distributed systems and evaluate the trade-offs in view of individual use-cases,
the TRANSACT partners have utilized existing approaches and developed new concepts. These contributions,
as detailed in this report, cover a wide range of tools and methodologies, spanning from systems engineering
and model-driven engineering to the exploration of simulation and optimization algorithms. The
development of such modelling and analysis methods for distributed cyber-physical systems is a rapidly
evolving field. This section provides an overview of current literature and elucidates the context in which the
TRANSACT contributions of this report are embedded.

The intrinsic complexity of distributed cyber-physical systems poses challenges for all areas of system design,
optimization, and implementation (Mittal and Tolk 2020). To tackle these challenges, it is essential to have a
good understanding of suitable modelling and simulation (M&S) techniques, how they can support in the
transformation from system engineering to validation and trade-off analysis, and where there are potential
pitfalls to be aware of (Falcone and Garro 2020).

Safety-critical aspects of the system would preferably be modelled using formal methods, mathematically
rigorous and structured descriptions that provide mathematical proof for a specific system behaviour (Liu,
Woodcock and Zhu 2013). Formal modelling can be very complex but offers the highest level of confidence
and accuracy. A comprehensive literature review of formal methods can be found in (Masmoudi, et al. 2022).
Even in the early design phase of requirements engineering, formal methods and languages can support the
development process (Zahid, et al. 2022). Independent of the exact type of modelling, Model-Driven
Engineering (MDE) approaches have become essential tools for the development of reliable CPS and are still
a growing area of research (Mohamed, Challenger and Kardas 2020).

The behaviour of a system can be described and formalized using different modelling languages. An overview
of modelling languages and frameworks applicable to CPS is provided in (Graja, et al. 2020) and (Zahid, et al.
2022). Typically, structured languages such as the Unified Modelling Language (UML) (OMG, Unified
Modeling Language n.d.) serve as a basis for formalizing processes and interactions. For the purpose of
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systems engineering, SysML has been developed as an extension of UML (OMG, What is SysML? n.d.). In
order to account for specific requirements of distributed CPS, attempts have been made to adapt the UML
formalism for this specific purpose (L. Zhang 2018). In other specific domains, variations of the business
process modelling and notation (BPMN) framework have been found to be applicable, as in the case of
hospital processes related to TRANSACT use case 4 (Pufahl, et al. 2022).

Once a structured model of the system is available, simulation methods help to understand the behaviour of
the system under different conditions — a prerequisite for validation and trade-off analysis. Due to the
complex nature of DCPS, several different simulation methods may be required. Some very prominent
methods are explained in the following.

Aspects that require capturing the continuous physical dynamics of a (sub-)system can be modelled using
continuous analytical methods, typically employing ordinary differential equations (ODEs). This may be the
method of choice for describing sensors or actuators interacting with the physical world or any other system
component that is exposed to dynamic physical processes.

Other aspects of the systems exhibit discrete states and state transitions, as is mostly the case for digital
(cyber) part of the system or for any step-by-step process representations of the system behaviour. These
aspects are often modelled using a Discrete-Event Simulation (DES) method (Fishman 2001). In discrete-event
simulations, the behaviour of the system is determined by a series of events, occurrences that influence the
state of the system at specific points in time. DES is particularly useful for modelling queueing and networking
aspects. When a system is better described as a collection of components that interact with their
environment in a specific manner, an Agent-Based Simulation (ABS) may be the method of choice. This
method involves modelling and simulating the behaviour and interaction of autonomous parts (“agents”)
within a system. ABS has been found particularly valuable for modelling distributed cyber-physical systems
that are difficult to describe by simple linear process models. Although ABS had been hypothesized to replace
DES in operations analysis already years ago (Sieber, et al. 2010), there are still many situations where DES is
very well applicable, such as the process-driven medical image reconstruction analysis exemplified in Section
5.7. An overview of state-of-the-art simulation software, in particular for DES and ABS, can be found in
(Paape, Van Eekelen and Reniers 2024). Additional simulation frameworks tailored to the needs of CPS design
are constantly evolving (Tampouratzis, Mousouliotis and Papaefstathiou 2023).

Finally, since many systems comprise very diverse components, processes, and interactions, it is often
necessary to combine simulation methods to a hybrid approach (Tolk, et al. 2018). Hybrid models can
incorporate combinations of continuous and discrete methods. It is worth noting that such hybrid
approaches, when performed in a rigorous and accurate manner, still pose many challenges and questions
about how to create consistent models remain (Bliudze, et al. 2019).

When hypotheses about the system behaviour need to be tested, but numerical algorithms are infeasible, a
statistical model checking (SMC) approach can be used, which is also based on the simulation models. In SMC,
the violation or satisfaction of assumptions is inferred from statistical properties of a finite set of samples
(Legay, Delahaye and Bensalem 2010). A review of statistical model checking approaches in the context of
CPS can be found in (Pappagallo, Massini and Tronci 2020).

In the design process of a DCPS architecture and setup, it is often required to perform a trade-off analysis to
balance different behavioural aspects of the system. The modelling and simulation techniques described
above can be used to evaluate different implementations of the DCPS and perform a trade-off analysis by
varying the system parameters, as elaborated in different parts of this document. When the parameter space
is large, optimizing the implementation details with respect to a certain performance or behavioural balance
requires calculating a large number of configurations. This is where a genetic algorithm can help to find an
optimum solution for given boundary conditions and optimization targets (Alhijawi and Awajan 2023). An
application of such an algorithm is described in Section 5.8.
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2.4 Structure of this deliverable

The remainder of this document is organized as follows.

In Chapter 3, an overview of the distributed solution architecture is given, which has been developed as part
of the TRANSACT project. It constitutes a universally applicable concept for transforming safety-critical CPS
into distributed CPS solutions. TRANSACT aims to enable the hosting of critical applications and facilitate the
allocation of their functions over the device-edge-cloud computing continuum. The infrastructure also seeks
to enhance system capabilities by offloading non-critical functions from the device and deploying safety-
critical functions to the edge tier, thereby improving reliability, performance, and innovation speed. The
architecture also introduces core and value-added services to ensure safety, performance, security, and
privacy.

In Chapter 4, T&V?is introduced as a transition and validation methodology, a holistic approach for the
transition towards distributed solutions in the edge-cloud continuum. It considers technical, operational,
legal, and business aspects, and extends beyond development to deployment and maintenance. The
methodology involves stepwise refinement of requirements and exploration of the design space, aiming for
early feasibility determination. It aims to explore the design space for a distributed solution and guide
verification and validation towards meeting diverse requirements in a complex system.

Chapter 5 details the contribution of the partners, covering the different topics of Task T2.3:

e In Section 0, Model-Driven Engineering (MDE) is presented as a technique for simulation-based
design and analysis of distributed CPS. Within MDE, CPS Architecture Models define the
infrastructure, application, and deployment aspects of a system. A Code Generator converts the
abstract model into simulation deployment and configuration files, including a monitoring
component. These files are then used as input for the System Simulation and Monitoring stage,
during which the system is executed and monitored within a cloud test environment. This approach
facilitates the evaluation of various cloud configurations and architectures, serving as a basis for
trade-off analysis.

e Section 5.2 addresses the technical challenges of managing cloud applications in the context of CPS.
It emphasizes the need for advanced tools and automation to facilitate the deployment, installation,
configuration, and monitoring of these applications. The discussion underscores the importance of
adopting sophisticated tools and a language that supports separation of concerns, readability, and
technology agnostic descriptions. The Kumori Service Model (KSM) is introduced as a language that
embodies these principles, providing an abstract and declarative framework to describe and execute
cloud application services.

e Section 5.3 investigates the transformation of classic (local) traffic control systems towards
distributed CPS and examines the potential implications and opportunities for advancements in
traffic management. It offers an overview of the current state in traffic control and addresses
important implementation aspects. It provides a trade-off analysis, focusing on safety, latency, and
cost-related considerations. Finally, it describes how external factors such as the adoption strategy
of road authorities practically affects the transition towards CPS.

e Section 5.4 discusses the transition process towards distributed CPS within the context of three
different domains: Requirements, Behavioural, and Physical. It emphasizes a design and
development process involving the physical decomposition of a system, followed by an assessment
of its elements according to quality attributes. This is combined with a functional decomposition and
an evaluation of the functional and physical domains with regard to these criteria. The process is
exemplified in the context of Cloud-Featured Battery Management Systems, specifically in the
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computation of battery cell resistance, effectively illustrating a mapping to the functional and
physical domains.

Section 5.5 focuses on the concept of "build once, run anywhere" for medical software, addressing
the challenges in the highly regulated medical domain when it comes to the transition towards
distributed CPS. The use of a microservice architecture with well-defined interfaces is discussed to
manage the dependencies of complex applications and to facilitate the development of cloud-ready
applications.

In Section 5.6, the transition towards distributed CPS using an edge/cloud platform is examined in
the context of medical image data for various healthcare applications, with Vesalius3D as a case
study. It provides an analysis of the trade-offs between edge and cloud deployment, considering
factors such as smooth interaction, scalability, application access, and costs. The discussion further
emphasizes the shift towards cloud deployment to target new market segments and improve
adaptability, scalability, and usability in support of enhanced treatment planning and patient care.
Additionally, it highlights the importance of aligning technical aspects with business objectives for a
successful transition.

In Section 5.7, distributed CPS are investigated in the context of a safety-critical clinical environment.
Discrete Event Simulation (DES) is introduced as a tool to guide the distribution of services in an Edge-
Cloud-based clinical application platform, with the goal of enhancing resource utilization, scalability,
and accessibility. Complex clinical workflows and processes are analysed using an individual event-
based approach. An example based on clinical data is used to demonstrate the application of DES for
evaluating the distribution of computational tasks related to medical image reconstruction across
various tiers of infrastructure.

Section 5.8 introduces the concept of Design Space Exploration with Genetic Algorithms for transition
towards distributed CPS. In order to facilitate the design and analysis of distributed CPS, with
conflicting design objectives and constraints, a multi-objective, non-linear constrained optimization
tool, based on genetic algorithms, is presented. Based on Application, Platform and Deployment
models, the design space optimization is able to provide multiple potential solutions in terms of a
Pareto Set, providing a mapping of software functions to the components of the CPS platform.
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3 Use Cases and the Reference Architecture

3.1 Reference Architecture (ITI & NUN)

The TRANSACT project has developed a universally applicable distributed solution architecture concept,
framework and transition methodology for the transformation of safety-critical CPS into distributed safety-

critical CPS solutions.

TRANSACT's reference architecture is based on a three-tier computing continuum that spans from the CPS
device (first tier), through the edge (second tier), to the cloud (third tier). This architecture, displayed in
Figure 1, brings together CPS end-devices at the edge of the network, with edge computing servers and cloud
computing facilities, hosting multiple and heterogeneous mixed-criticality applications.
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Figure 1: TRANSACT Reference Architecture

3.1.1 Three-tier computing continuum

A key element of TRANSACT is that both these off-device tiers (edge and cloud), in addition to being multi-
application, multi-device and possibly multi-tenant, support scalable and interoperable, as well as safe and
secure, solutions. Complex applications can be flexibly deployed over this distributed architecture. Novel
services and applications can share edge and cloud infrastructures, reuse domain services, and in general be
faster developed, tested, and released independently from the safety-critical device itself. This distributed
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architecture concept is directed to enable new business models by transforming system manufacturers into
solution providers.

The main system functionalities are distributed across the three tiers. The CPS end-devices are linked to the
cloud computing facilities via the edge infrastructure, while the end-devices and the edge tier are connected
via a reliable network, whereas the cloud tier is only accessible from the Internet. Each tier provides a specific
quality of service level especially with respect to performance aspects (such as response times and data
transfer guarantees) that are essential for the safety- and mission-critical functions. These, along with non-
critical functions, may be offloaded from the device to other tiers.

3.1.2 TRANSACT services and functions

The safety- and mission-critical functions are key in the safety-critical CPS. TRANSACT aims to improve the
existing CPSs by, firstly, stripping the device of the functions that are not safety- or mission-critical and can
be executed remotely; and secondly, by offloading certain safety-critical functions to the edge tier. The
functions to be offloaded are identified at design time and deployed in the required tiers. As a result, the
device would only keep the basic safety-critical functions while offloading the remaining functions to the
other tiers. Such an approach presents numerous advantages such as: improved reliability and performance
of the device (as fewer services are running on it), improved efficiency of the offloaded functions due to
usage of better hardware at the edge or cloud, and improved innovation speed of the distributed CPS solution
as the new or upgraded functions can be deployed with greater ease at the edge and cloud.

The architecture introduces several Core services deployed across all tiers to ensure safety, performance,
security and privacy of the new solution, especially when offloading functions from the device. They are
available to every use case. Value-added services and functions, that enhance the system capabilities, are
also defined. These functions can be introduced during the system design or after the system release (as part
of the system updates). They refer to potential components that may be included depending on the use case.

In the TRANSACT project, this universally applicable distributed solution architecture has been elaborated
and augmented with a framework and transition methodology for transforming safety-critical CPS into
distributed safety-critical CPS solutions. The architectural solution can host a diverse set of mixed-criticality
applications, which can be distributed over multiple resources, e.g., CPS devices, high-end computing
resources hosting multiple applications of mixed-criticalities, or in the cloud. It also supports a variety of
interesting trade-offs by allowing the allocation of mixed-criticality functions over the computing continuum
of device-edge-cloud.

TRANSACT reference architecture is thoroughly described in deliverable documents D7 (D2.1) and D26 (D2.4).

3.2 Transition to the TRANSACT concept (ITI & NUN)

Business, product, and technical system requirements are mapped and assimilated into the reference
architecture to ensure its effectiveness. However, the complete architectural vision covers not only the
technologies matching the different components, but also the operation environment for the development,
deployment and execution of the solution, including the edge and cloud underlying infrastructure. Therefore,
a blueprint assessing an approach to the reference architecture is required, focused on how to realize the
transition from a monolithic safety-critical CPS to a distributed solution that keeps ensuring safety,
performance, security and privacy, as well as regulatory requirements compliance.

As deliverable D23 (D1.3) establishes, to make a successful transition and transformation from the on-device
solution to the distributed solution using edge and cloud services, careful consideration and planning are
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required. First, it is needed to thoroughly review and understand the current system architecture and the
technology stack it is built on. Second, the cloud providers’ capabilities and services need to be explored, to
optimally match application workloads to the cloud provider environment and services, finding the best
combination of technologies and services that is cost-effective. Third, the high-level blueprint of the new
solution should be created covering all the product design stages, supporting development, deployment and
operation of the solution, in addition to the required underlying infrastructure, as Figure 2 depicts.

These elements are analysed along the next paragraphs, aiming to point out considerations for the
adoption of TRANSACT’s approach and reference architecture, that should be kept in mind when tackling
the transformation of a safety-critical CPS into a distributed solution. A more detailed study and description
of these elements, that guide such a transition process, can be found in deliverable documents D23 (D1.3)
and D36 (D1.5).

Transformation focus areas Cross-cutting aspects

Business

Architecture

Product

Architecture ‘ Development Operation
DevOps

Infrastructure

Organization

Figure 2: TRANSACT transition: Architecture Transformation Area elements

Taking into consideration the outline, analysis and itemization of the reference architecture presented in
Section 3.1, the following aspects impacting the architecture should be considered while transforming an on-
device CPS into a distributed solution:

e Architectural approaches for distributed safety-critical solutions

e Migration of safety-, mission, and non-critical functions to the new architecture
e  System security

e System updates

e System monitoring and observability
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Migrating safety-critical CPS to a distributed solution over the device-edge-cloud computing continuum also
impacts development. The following aspects require particular attention when developing a product:

e CI/CD pipeline

e Testing approach

e Source code version management

e Knowledge and expertise on device-edge-cloud computing development tools and methodologies

Product operation is impacted by the transformation to a distributed solution since it is concerned with the
deployment and monitoring of the delivered solution in the device-edge-cloud continuum. Therefore, the
(currently device-focused) operations team needs to expand their capabilities to also cover edge and cloud
concepts and technologies in order to ensure the most efficient deployment and support of the new
edge/cloud solution. In general, the new system architecture requires the product operation team to focus
on the following aspects:

e Deployment

e Maintenance and updates

e Runtime monitoring & logging
e Runtime optimization

Traditional solution creation approaches have a strict separation of roles like development, operation, quality
engineering, and security, that may lead to inefficiencies and, consequently, delays of new product releases.
DevOps is a set of methodologies, practices and technologies aiming to improve the speed and efficiency of
the software development and product release processes, emphasizing the collaboration between the
development and operations teams. In the new distributed CPS solution, DevOps will play a significant role
in the product lifecycle, especially due to the complexity of the new deployment over the three tiers, more
intricate product design and the new concerns in the areas of safety, performance, privacy and security.
These non-functional properties must be made relevant during the CPS regular development and operational
activities, aiming for a more effective and efficient realization of cross-functional requirements. Furthermore,
considering the teams are well-formed, sized and proper team DevOps skills to confront the new ways of
doing will be highly important for the migration success.

Finally, to support the new device-edge-cloud continuum solution architecture, the infrastructure for
product development and deployment needs to be adapted as well. In general, the new solution architecture
will not only depend on the infrastructure and software services that are owned by the organization, but also
on the infrastructure of the cloud provider or the specific services and solutions of a certain cloud platform.
The product development infrastructure, used by the development team, covers all the development
environments and tooling used to build and test the solution's assets. The product deployment
infrastructure, used by the operations team, covers the CD environment and tooling used to deploy and
monitor the running solution over the device-edge-cloud continuum, including safety-critical and mission-
critical functions. When an organization considers adopting the aforementioned DevOps model, then the
development and deployment infrastructures should be tightly integrated for efficient and optimized product
deployment, updates and operation.
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4 Transition and Validation Methodology (T&V2 Methodology)

In this section, we outline a general strategy for the development and transition of a monolithic device to a
solution that is distributed over the edge cloud continuum. It draws heavily on the T&V methodology of T2.2,
which guides the development of a distributed solution through accompanying verification and validation
activities. The methodology presented below adapts the T&V methodology presented in D27 with a focus
on a holistic transition methodology.

The T&V? Methodology! places a stronger focus on considering that the design decisions induce business
constraints, legal obligations and operational changes (B/L/O). In addition, it considers that not only the
development of the technical solution itself is necessary, but the solution must be deployed and maintained.
The methodology hence specifies the requirements on the migration activities that are implied by the
respective design decisions. Note that deployment and maintenance are both complex processes that are
monitored and have to deal with faults. Data from these processes can be propagated back to the
development phase to drive the specification of requirements. Figure 3 illustrates the development process
of the transition process, where the traditional development activities of the technical solution are a major
activity but this activity is accompanied by the concretization of requirements relating to the additional
dimensions mentioned. Figure 3 also illustrates that information of the deployment and runtime phase is fed
back triggering the further adaptations and the continuous evolution of the system.

The methodology described in this section constitutes a generic framework generally applicable to transition
and validation processes. This high-level description of the relevant concepts is complemented by detailed
examples of real-world implementation aspects in Section 5.

1 T&V? abbreviates Transition & Verification, Validation. The superscript 2 serves to distinguish it from the
T&V methodology of T2.2.
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4.1 Motivation

In the following, we describe in a generic way a stepwise process developing a distributed solution along with
constraints on a migration plan. The methodology starts with a given system that shall be enhanced by a
distributed functionality in the edge-cloud continuum.

The methodology starts with what is expected from the overall distributed solution and ends with having
defined the technical requirements for all components, as well as requirements for

e migration,
e running in normal & fail-safe modes and
e maintaining & evolving

the system. Also, requirements that result from the

e operational
o legal
e business

perspectives are specified. It defines increasingly more concrete requirements reflecting design decisions
that have been taken (e.g. “What functionality is located where?”, “What services are used in the cloud?”,
etc.). When it turns out that a requirement cannot be realized, the design variant will be dismissed and the
alternatives will be explored. The method proceeds until the design of a technical solution has been
concretized to directly implement it component-wise.

Device S Device S

FF}
APl

Figure 4: Requirements definition by the T&VV? methodology leads to a distributed solution S. The
requirements relate to technical aspects but also to business, legal and operational aspects as well as to the
migration plan.

4.2 Relation to the TRANSACT transition methodology

The TRANSACT transition methodology (cf. D23 (D1.3) and D36 (D1.5)) considers the transition process
holistically starting from the business perspective. In contrast, in T2.2 (and in D27(D2.2)) the technical system
development process is considered to explain where in the development process the methods & tools for
validation and assessment of a system (model/variant) are required. In this deliverable, both methods are
combined in order to derive strategy for development for a distributed system and requirements on the
migration plan.

4.3 Steps of the T&V Methodology

The T&V? methodology considers the case that an improved version S’ of a given SCCPS S is to be developed.
The focus is on the case where S’ is derived from S by distributing a set of its functions S, over the edge-cloud
continuum. More precisely, we assume that Sy gets replaced by a set of functions S’y that use the services of
the TRANSACT architecture and together with them provides the improved functionality. The T&V?
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methodology leaves open how the exact transition strategy is. For instance, Sy may be rehosted or Sy may
get refactored and rehosted.

The basic argument for ”S”is an improved version of S that satisfies the requirements Req™ is that it has been
established that the distributed S’y “adequately replaces” the initial Sq. The T&V methodology assumes that
the requirements will be defined such that S’y will “adequately replace” Sy, i.e. the concretized requirements
refine the initial requirements. The T&V? methodology drives the definition of requirements and aims to
establish whether the requirements can be realized as early as possible.

Figure 5 (cf. D27, Sect. 3.3) gives an overview of the T&V2 methodology. In the following, we explain the
methodology in more detail.

Step 4

Device Device

FiFilFilFid 1P lFalFiilFiv

Device
# [ Regs Reqe |Reqs] Reqc
API

Initial device S Req' refines Req Impact analysis of encapsulation Impact analysis of distribution & network requirements

fulfills Req The functions S, will be replaced

by a distributed solution
satisfying Req,

4 S' the distributed solution )
Device S Edge Tier Cloud Tier

A

: S'4, solution of the off-loaded functionality

N R TR e Y,

Impact analysis of component definition at the edge &
cloud tiers

Figure 5: T&V Methodology

The methodology stepwise concretizes the distributed solution by concretizing requirements by decreasing
the level of abstraction. Since we aim for a fast development process, we prefer to evaluate as early as
possible whether a design variant is realizable or not.

Whether a variant is realizable depends on whether all requirements of the different dimensions can be
satisfied. We focus here on the dimensions operational, legal, business and technical. Operational
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requirements refer to how to run the system. What data has to be logged, what requirements are on the
startup/shutdown controls or back up, etc. Legal requirements refer to constraints that have to be obliged
by law and rules that result from it for subsystems. This relates to laws that concern the solution but also to
obligations that the solution has to guarantee due to sales contracts. We moreover consider business policy
rules here. There are certainly other dimensions that constitute an important focus, like ethics or
sustainability, but TRANSACT did not focus on these.

As a running example, we consider the operational requirements “availability of staff”, legal “data protection
demands”, business “maximum cost may not be exceeded”.

At each concretization step, the engineer hence has to ask:

e What does the technical design decision to refine Req to Req” mean for the operational, legal,
business requirements? Are they still satisfied?

e What (refined) requirements follow from this decision regarding migration, running in different
modes and maintenance & system improvement?

e Are these requirements satisfiable?

In the following, we use decorated versions of S (S’, S’,...) and Req (Req’, Req’s,...). We usually refer to
implemented solutions of requirements (i.e. system or functions) as S (plus some decoration) and we refer
to the specification of requirements by some decorated form of Req. In order to stress that the implemented
solution has to satisfy the respective requirement, we try to use matching decorations, i.e. Req’ is
implemented by S’ (and which is synonymous for “S’ satisfies Req”” in the following).

4.4 Stepwise Refinement of Requirements & Exploration of the Design
Space

For simplicity, we assume that S only consists of an end device and satisfies the requirements Req. We also
assume that the system S’ -to be developed- is developed in order to provide additional or improved
functionality.

In Step 1, the process starts with a CPS end device S on which a collection of functions is implemented. The
device is known to satisfy the requirements technical Req and the business requirements Regs, legal
requirements Req; and the operational requirements Reqo, since they have been established during the
design of S.

In Step 2, the new technical requirements Req’ are specified as well as the relevant business, legal and
operational requirements Reqs, Req., Reqo. As we are interested in service improvements, the requirements
Req’ refine the requirements Req of the initial device S. The legal requirements Req; are all the laws and
regulations that the to-be-designed solution has to satisfy. This relates to data protection laws but also
company specific regulations where data may be processed and stored. But also employee protection laws
might become relevant, if distributing a solution necessitates e.g. that technical staff has to be ready to fix
off-site devices. This business requirements will often focus on the gained value. The requirements Regqs,
Reqi, Reqo describe the business/legal/operational requirements that are relevant for the to be developed
solution S’ that satisfies the new requirements Req’.

In Step 3, the question “How can S be modified in order to satisfy the new requirements Req’?” is considered.
The different design alternatives will be evaluated in terms of cost-benefit considerations, as well as the risks
of changing established components. If the new requirements Req’ cannot be fulfilled locally, a plausibility
check will evaluate whether it is feasible to distribute certain services over the edge-cloud-continuum. Figure
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6 gives an overview of Step 3 for the case that Sy gets distributed. In the following, we explain step 3 for
offloading Sq in more detail.

(i) (ii) (iii)

The functions in  Encapsulating S, $-54 is Swithout  Requirements Req', specify Is it plausible to assume
S, are candidates IS examined S what is expected from there is an implementation
for off-loading (fallback-routines, off-loading S, ', of Req'y?

interface & data
flow changes, ...)

Figure 6: Off-loading the set of functions Sy

Figure 6 illustrates that a set of functions Sy is identified that are good candidates for offloading. Sy is used as
a starting point to specify the requirements on the offloaded functionality, Req’s. Req’s (cf. Figure 6(iv))
specifies what the future off-device solution S’y (cf. Figure 6, right most and Figure 5, step 3) must provide
for the end-device, so that §’, the final system, satisfies the strengthened requirements Req’.

Req’s already implies an impact on the data flow. To implement the new improved functionality the required
data will leave the device. The decision whether the functionality will be processed at the edge or the cloud
tier has not been taken yet. At this step additional B/L/O requirements must be added that ensure that the
distributed solution will be acceptable. The guiding questions here are, “What is the impact on B/L/O when
the initial functionality will be replaced by Req’s that is provided on the edge-cloud continuum?”.

The device also has to be redesigned. Since offloading entails additional communication and synchronization
for the end device to connect to the edge-cloud continuum, (R-a) the services Sy will have to be detached
from their old infrastructure and (R-b) a preliminary interface between the end device with the TRANSACT
device tier components and the to-be-developed solution S’y is specified. As data will be send to the edge-
cloud continuum data-preprocessing at device tier may be necessary for e.g. anonymization. (R-c) The new
design also must provide fail-safe mechanisms to cope with the changed response times or outages due to
network problems for the distributed functionality Req’s.

Since at this point, the exact solution is not clear, a plausibility check must assert that appropriate fail-safe
mechanisms can be implemented on the device. During the plausibility check the requirements Req’y on the
to be developed solution can be concretized. Regarding the design of the fail-safe mechanisms a guiding
question is “What does the edge-cloud solution S’y need to guarantee, so that the device tier is able to
function correctly even in the worst case?” and “What kind of proof/certification do the involved edge-cloud
components need to provide in order to be useable in a safety-critical system?”.

The plausibility check should also include a preliminary migration plan that specifies requirements on how
and when the device can adapted/exchanged. Guiding questions are (m1) “How can the device be
transformed?”, (m2) “Who can do it? (Employees or subcontractors)”, (m3) “What equipment is needed?”,
(m4) “What are the costs of changing the system, doing the migration and running the changed end-device?”.

After having collected the new requirements, another activity of the plausibility check is to answer whether
a distributed solution for Req’y may be found that satisfies all the B/L/O requirements. The cost-benefit
considerations will have a dedicated focus on the safety, security and privacy risks associated with offloading
Sa.
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In Step 3 no concrete solutions for S’y must be considered. Step 3 evaluates the influence of connecting an
abstract functionality Req’s to the end device and checks whether it is plausible to assume that later in the
development process an implementation S’y can be found that realizes Req’y. Therefore, the approach
examines the composition of

1. 5-S4, the end-device after Sy has been stripped off and which is equipped with the necessary
TRANSACT components of the end-device, and

2. Req’s which represents abstractly all possible distributed solutions S’;.

If the realization of Req’sis not plausible, the process steps back to determine a different set S, of services to
be offloaded.

In Step 4, functionality is assigned to the edge and to the cloud tier. The goal of Step 4 is an impact analysis
of the networks on the distributed solutions for Req’s. Any distributed solution of Req’s must cope with the
different service levels of the two network types of the TRANSACT architecture: the reliable network between
device and edge tier, and the less reliable internet connection that is available between all tiers. Guiding
questions for this decision are “What response times are required?” and “What reliability is needed?”, but
also “Is the data distribution and storage in accordance with regulations?”.

The candidate solutions are specified as abstract as possible in terms of their requirements. To this end, their
requirements are defined on

. the network connection between device and edge tier Reqpe,

. the services that will be at the edge tier Reqg,

o the network connection between edge tier and the cloud tier Regec and
o the services that will be at the cloud tier Reqc.

Still no concrete implementation of the services on the edge tier (i.e. a solution of Rege) or on the cloud tier
(solution of Reqc) is required. By defining Reqr and Reqc it is specified what functionality will be realized
where. This concretizes the data flow to some degree: What data is needed at the cloud to realize Reqc and
what data is needed at the edge to realize Rege.

Hence, in Step 4 also security and privacy aspects will be (re)evaluated and respective constraints on the
technical solution and regarding legal requirements have to be specified. A guiding question moreover is
“What certification/data protection guarantees are necessary for the to-be-outsourced data?”. Business
requirements might be added to specify which services (and knowledge) should be developed inhouse and
which can be outsourced. Business requirements should also state the value gained by outsourcing, the
accepted costs for outsourcing, and required minimum contractual guarantees of the outsourced services.

Regarding the migration, maintenance and updating rough estimates will be used to assess whether the
choice of Regr and Reqc are plausible. Also, abstract failback mechanisms will be specified and the data
transmission requirements and timing requirements will be specified.

After having collected the new requirements, a plausibility check has to answer whether the requirements
are satisfiable.

For assessing whether it is plausible that an implementation of Reqpe, Reqec can be found, the available
network providers and the types of networks are considered. One focus in this step is on timing requirements
and reliability. As a result of a thorough assessment, the initial versions of the fallback routines (designed at
Step 3) may be adjusted and the according changes in the design must be propagated.

In Step 5, the edge requirement Rege and the cloud requirement Reqc are further refined into component
requirements. In Figure 5 we illustrated an example where Reg: is refined by the composition of
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requirements Req: and Req., while Reqc gets refined by the composition of the requirements Req,, Req, and
Req.. These refinements concretize how the functionality will be implemented on the edge and cloud using
the services available at the respective tier.

After specifying the requirements on the individual cloud and edge services, provider and the concrete
services are chosen. Additional non-technical requirements that are important in this step are hence “Is
sufficient customer support provided for the chosen cloud services?” “Is the communication between
inhouse stakeholder and the provider easily possible?”. The previously identified requirements regarding
acceptable contractual guarantees/conditions/costs and regarding sufficient certification must be checked.
Moreover, the data flow for monitoring and updating/deployment must be checked for the compilation of
services. A migration plan that satisfies the requirements must be worked out with the involved service
providers and agreed upon.

If no plausible implementation of the requirements can be found, the process steps back to Step 4 (or earlier
steps). Stepping back to Step 4 allows a new assignment of functionality to the off-device tiers. Stepping back
to Step 3 allows to off-load a different set of functions, stepping back to Step 2 allows to modify the targeted
functionality Req’ and stepping back to Step 1 would allow to exchange even the initial system.

This process of refining Req:s and Reqc to component requirements is often guided by the initial
implementation of the functions Fi;, Fi, on the end device and by the added-value services on the respective
tiers, that together can be used to realize the requirements. As in Step 4, the required service level has to be
ensured, mode management exploiting fallback mechanisms will be used. This may lead to additional
communications, so that stepping back to one of Step 4,3,2 or 1 may be necessary.

The Steps 1 to 5 together build a strategy to explore the design space for creating a distributed solution. After
Step 5 has been successfully completed, the requirements for all components are specified along with
requirements on B/L/O and constraints on the migration/updating. In the best case, the specified technical
requirements allow to derive their implementations via a press button approach. The B/L/O requirements
can evolve even after the technical implementation has been accomplished — for instance due to test results
that induce change in the operational processes.

4.5 From Requirements to a Solution -- Verification and Validation

The above process describes how a monolithic pure on-device solution is (partly) distributed to cloud and
edge and how requirements for the distributed solution can be derived based on the original solution's
requirement and how the requirements can be (re-)established.

The process is not intended to specify a strict temporal order in which the respective requirements are
further concretised. The order can be based on the need to analyse critical design decisions. Rather, the T&V?
methodology outlines the key design steps that lead to a distributed solution and guides the exploration of
the design space.

Since it must be shown that the final system fulfils the requirements and the complexity of the system is
immense, the T&V? methodology can benefit from the use of contract theories. We can think of the
requirements as contracts. Consider a contract theory that defines composition, quotient, and refinement of
contracts. If we have shown that a contract C is refined by the composition of contracts C; and C,, then the
further evolution (refinement to final implementation) of each C; can be done independently of the others.
The contract theory guarantees that contract C is fulfilled. So, when using contracts, it is sufficient to prove
the refinement relations concretizing the design. Thereby, it can be avoided to analyse the final
implementation of S’ as a monolithic system, instead the abstract contracts C, C;, ... are examined, and the
Ci only refer to parts of the overall system. This allows a large reduction of the complexity. Although there is
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a wide range of formal contract theories, not all aspects of a system are covered. Properties such as reactivity
or security, for example, are such properties. This means that there is no general mathematical theory that
defines how a monolithic requirement Req can be decomposed into more concrete requirements Reqy, ...,
Reqn so that the composition of solutions for Reqi, ..., Reqn is guaranteed to be a solution for Regq.
Consequently, (i) structured, expert-based methods such as (Rakow 2021) Risk Storming must be applied to
define the requirements during the design process, and (ii) holistic simulation approaches are important to
verify that these requirements are met. It is not enough to test a single component, but the interaction of
the solutions must be thoroughly tested, also for emergent behaviour.

Evidence is required to show that the nontechnical requirements are satisfied equally. As argued in (Rakow
2021), the different stakeholders should have various contracts that also relate to the involved infrastructure
in order to make the update process predictable.
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5 Transform safety-critical Cyber-Physical Systems

In this section, multiple examples of transformation, validation, and trade-off aspects for TRANSACT
applications and use cases are presented. The diversity and complexity of the problems to be addressed
indicate that abstract and high-level descriptions as the T&V? methodology presented in Section 4 can be
helpful to cover the individual aspects in their entirety.

5.1 Model-driven Engineering for simulation-based design and trade-off
analysis (UOC)

Model Driven Engineering (MDE) is an engineering approach that focuses on the use of models to design,
analyse, and build systems. MDE seeks to reduce complexity in the construction stages of systems to speed
up development and validation by using different strategies and solutions based on the use of models. For
example, model transformation allows deriving concrete implementations from abstract models to
automatically obtain solutions as source code or software artefacts. There are three main types of model
transformations: model-to-model (m2m) transformations (e.g., to transform a high-level model describing
the architecture of a CPS into a low-level model specifying the implementation details), text-to-model (t2m)
transformations (e.g., to transform a machine description and characteristics to JSON? format), and model-
to-text (m2t) transformations (e.g., to produce YAML? configurations from a deployment model). See also
Figure 7.

To support the simulation-based design and analysis of the CPS following the TRANSACT architecture, this
section proposes an approach based on model transformation for the execution of CPS simulations.
Concretely, this approach enables the deployment of the system in a cloud testing environment following
the CPS architecture to monitor the infrastructure. Figure 7 shows an overview of the approach and the main
components involved.

e The CPS Architecture Model addresses the specification of the CPS architecture, including three main
concepts: infrastructure, applications, and deployment. The CPS infrastructure involves the
specification of sensors, actuators, edge nodes, cloud nodes, and messaging brokers (if the system
implements asynchronous communication). The applications and services that address the system
requirements are also specified in the architecture model. These applications correspond to the
system functions that address the requirements (i.e., safety-critical, mission-critical, and non-critical
functions). Finally, the deployment describes which nodes of the infrastructure will host the
functions.

e Code Generator is the component that performs the model transformations to generate the
simulation deployment and configuration files. This component takes the input model (CPS
Architecture Model) and performs a series of M2T transformations to generate several YAML files.
The files contain the code for deploying and configuring the functions using a cloud test environment.
A monitoring system is also automatically deployed to monitor the infrastructure and quality
attributes such as application and node availability.

2 JavaScript Object Notation is a text format for data exchange.
3 YAML is a data serialization format used in this study to represent Kubernetes objects.
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e Finally, the last stage involves the System Simulation and Monitoring, where the generated code is
executed to deploy the system (using the cloud test environment) and the monitoring system. A
sensor emulator is also run to recreate data generation (using a historical data dataset) from the
device tier sensors. The monitoring system provides information about the resource consumption
(such as CPU, RAM, and Bandwidth consumption) and the availability of the functions and nodes. For
example, it is possible to identify bottlenecks or overloaded nodes that may generate issues.

Using this generative approach, trade-off analysis can be easily implemented by performing small changes in
the source CPS Architecture Model, e.g., it is possibly to analyse different deployment configurations (either
in the edge or the cloud) or architectures by simply modifying a single parameter in the source models. By
comparing the results when a specific configuration has changed, developers and operators can take
decisions on the most suitable architecture, system configuration, or deployment configuration.

System Simulation and Monitoring
CPS Architecture Model

Code —
Generator Cloud test Monitoring system
environment #
Infrastructure specification Input (mZt) Code = r’ J
generated =
model ——
Applications and services = = CPU
RAM
I I Bandwidth
Deployment specification Update model architecture Sensor . Disk. space
emulator * Availability

Figure 7: Model transformation approach to support simulation of the CPS architecture

In this approach, the architecture implementation is simulated in a Cloud test environment. Additionally, the
generation of device layer sensor data is simulated and controlled by means of a Sensor emulator (a Python
script that can read a historical sensor dataset and emulate the data generation).

In UC5, this approach was designed and focused on the specification of the WWTP CPS architecture, model
transformation, and system simulation. The main components developed are as follows.

e A Domain-Specific Language (DSL) for the specification of the CPS architecture. This DSL was
developed using MPS* providing a mix of editors and multiple notations such as tabular, graphical,
and textual.

® A Code Generator built in MPS to perform model transformations and generate code. This
component generates a group of YAML files for the deployment of the functions (using software
containers) and the system monitoring in the cloud testing environment.

® A Sensor Emulator to emulate the device tier sensors. This component generates data (like real
sensors of the WWTP) reading a historical dataset of five variables: total suspended solids (TSS),
chemical oxygen demand (COD), electrical conductivity, pH, and temperature.

Finally, the modelled architecture can be deployed in a test cloud environment by provisioning virtual
machines at a cloud service provider. The data generation frequency of the Sensor Emulator can be modified
to evaluate the capabilities of the infrastructure and functions deployed. Architecture design decisions and
trade-off analysis can be made based on the data captured by the monitoring system.

4 Meta Programming System of JetBrains
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To sum up, the CPS Architecture Model is transformed to support the simulation of the infrastructure and
functions of the system. For instance, the TSR40 (the architecture should support the usage of message
brokers) is an availability requirement that could be evaluated using this approach as follows. First, to specify
the device-edge-cloud continuum architecture model including the functions and message broker(s); then,
using the code produced by the Code Generator, deploy the system in the cloud testing environment; Finally,
test and analyse the system by modifying the number of clients and the frequency of sending data to the
broker(s). The monitoring system collects several resource consumption metrics and displays system
information about the availability of nodes and applications (including messaging functions and brokers). If
a fault is detected, the architectural model can be modified/upgraded to run the simulation again.

5.2 Design Language for Cloud Applications (KUM)
5.2.1 Overview

With the shift from traditional to distributed CPS, utilizing the three-tier computing continuum, cloud services
providers encounter new challenges related to the specific requirements and complexities of deploying and
managing safety-critical CPS in a distributed environment. In order to address these challenges, specialized
infrastructure, services, but also operational practices must be developed to handle to the unique demands
of distributed safety-critical CPS solutions.

Cloud applications are typically composed by several pieces or components deployed over several servers in
a cluster. Those pieces collaborate to perform the cloud application tasks, usually related to user
requirements.

Which components are part of a cloud application and which servers run each component can dynamically
change over time. Both software and hardware can be updated or are scaled while the cloud application is
running. Service providers and maintainers also need to know how their cloud applications are performing
and which issues arise over time.

Installing, configuring, and monitoring the cluster’s nodes and the cloud application’s components manually
is an almost impossible task and some sort of tools and automations are needed. As an example, shell scripts
can be used to install, configure, update, and monitor both the software and the underlying infrastructure.
Unfortunately, shell scripts can be difficult to maintain and usually require a deep knowledge of the system
being installed. This is why the majority of cloud applications used in production environments employ more
advanced tools, while shell scripts are delegated for some minor tasks.

Using a tool implies declaring to that tool what it should do using some sort of language. The choice of tools
and languages determines how complex and error prone the management of the cloud applications and the
underlying clusters will be.

5.2.2 Choosing the Language

The following three aspects can improve the tools’ usability and maintainability:

e Separation of concerns: taking into account the roles of the different people involved in a cloud
application life cycle.

e Readability and maintainability: the language should never add complexity to tasks.

e Technology agnostic description: a description should only be coupled to whatever it is describing
and not to any other external technology.
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Separation of Concerns

Several roles are involved in the management of any cloud application used in production, especially in
applications of a certain size with demanding service quality requirements. Just as an example, components
developers and application operators have different requirements. A good cloud application description
language should allow each role to focus on what they know or need and forget about the rest.

As an example, a cloud application might require an administrator password for its configuration. The
operator sets this password, and the developer knows how this password is provided to the authentication
component (configuration file, environment variable). If both things (the password value and how it is
exposed to the authentication component) are included in the same file, that file requires both roles, so that
file has not a clear owner. If in one file the configuration parameter values of the cloud application are
provided and in another file it is described how that configuration is exposed in the authentication
component, each role can work independently and not get lost in aspects they don't fully understand and
should not worry about.

Readability and Maintainability

As explained in the overview, shell scripts are hard to read and hard to maintain. A conceptually minor change
might require a lot of time and be very error prone even for an expert. Furthermore, scripts tend to be
patched and extended over time, which typically makes them less readable and less maintainable.

One of the problems with shell scripts is that they include sequences of operations and mix what should be
done with how it should be done. In a purely descriptive language, the complexity is only related to what is
being described, no matter how many changes have been made to that file.

Technology Agnostic Descriptions

One of the traditional problems of some tools is that they are tightly coupled to the underlying technology.
As an example, Helm is a widely used tool to ease the process of managing services in a Kubernetes cluster.
A Helm chartis a recipe describing how a cloud application is deployed and configured. Helm charts are based
on templates and, hence, are tightly coupled the underlying format of the final files (in this case, Kubernetes
objects). If you create a Helm chart to deploy your application, this chart can only be used in a Kubernetes
compatible cluster. To deploy it in a cluster managed by a different container orchestration system that
doesn't use Kubernetes, objects and the templates are useless.

A good cloud application description must focus on just describing your cloud application components using
an technology agnostic language. The tool reading that file is responsible for converting this to the underlying
orchestration system low-level language.

5.2.3 The Kumori Service Model

Kumori Service Model (KSM) is the language that has been used in Use Case 5 and in the horizontal
demonstrator. This model was successfully employed throughout the TRANSACT, while the Kumori Platform
evolved during project in order to address the requirements of the different scenarios, while the underling
The language is strongly based on the three pillars exposed in the previous sections:

e Separation of concerns.
e Readability and maintainability.

e Technology agnostic descriptions.
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KSM is used to describe services in Kumori clusters but the description is technology agnostic. It is based on
the following principles:

e Designed for describing services (cloud application).
e Declarative: it is purely descriptive and can be potentially converted to any target technology.
e Separates between service configuration, service description and component description.
e Uses a high level of abstraction.
The language is based on the declarative language CUE (CUE n.d.). It differentiates between:

e Artifact: describes a cloud application, including which configuration and resources (volumes, CPU,
RAM, ...) it requires.

e Service Application: configuration values and resources used for a concrete execution of an artifact
in a given cluster.

It also identifies two different types of artifacts:

e Component: an atomic runnable artifact usually associated to a docker image. In other words, a
microservice.

e Service: a distributed artifact composed by several interconnected roles. Each role is an artifact.

Component manifests (Kumori n.d.) are written by components developers. Service manifests are written by
service architects. Service application manifests are written by operators.

Artifacts

Every artifact manifest declares at least the following elements:

#Artifact: {
ref: name: "frontend" <1>
description: {

srv: { <2>
server: {
restapi: { protocol: "http", port: 8080 }
}

client: {

database: { protocol: "http" }
}
}
config: {
parameter: {} <3>
resource: {} <4>

}

<1>The artifact name

<2>The artifact interconnection points (in which ports it listens and which external elements it requires
connecting to)

<3>Which configuration parameters it requires
<4>Which resources (volumes, ...) it requires

A component is a specialization of an artifact backed by a docker image:

#Artifact: {
ref: name: "frontend"
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description: {

srv: {
server: {
restapi: { protocol: "http", port: 8080 }
}
}

config: {
parameter: {}
resource: {}
}
probe: {...} <1>

code: {

frontend: {

image: tag: "kumoripublic/examples-hello-world-frontend:v1.0.6" <2>
mapping: { <3>
filesystem: {...}
env: {...}

<1>How the component health can be checked.
<2>The image containing the component binary.

<3>How the configuration and resources are exposed in the docker container (environment variables,
files, path).
A service is another specialization of an artifact.
#Artifact: {
ref: name: "frontend"
description: {

srv: {
server: {
restapi: { protocol: "http", port: 8080 }
}
}

config: ({
parameter: {}
resource: {}
}
role: { <1>
helloworld: {
artifact: helloworld.#Artifact
config: {...}

connect: { <2>
cinbound: {
as: "lb"

from: self: "restapi"
to: helloworld: "restapi": _
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<1>Declares which artifacts are part of this service and their roles. It also declares how the service
configuration is provided to that artifact.

<2>Declares how the roles are interconnected.

Note that the descriptions do not depend on where they are going to be deployed and are purely descriptive.
Kumori tools know how to run services in a Kumori cluster using the information provided in a deployment
manifest and the underlying artifacts manifest. However, the same information can be used to deploy that
service on any other cluster managed by any orchestrator by using the appropriate tool.

Service Application

A service application is the execution of an artifact in a cluster. It contains the values assigned to each artifact
declared parameter and the resources assigned to each resource dependency declared in the artifact:

#Deployment: {
name: "helloworlddep" <1>
artifact: s.#Artifact <2>
config: {
parameter: { <3>

myparam: "myvalue"

}
resource: { <4>
myvolume: "volumel"

}
scale: detail: { <5>
frontend: hsize: 10

}

resilience: 0

<1>The name of the new service
<2>Which artifact is being executed

<3> Assigns values to parameters

<4> Assigns resources to the new service
<5>Initial scale of the artifact elements

Note that the configuration provided to a given service execution is completely decoupled from the service
description.

5.3 Traffic control (VIN)

5.3.1 Use case introduction

Traffic control systems are used to control the traffic flow at intersections, where traffic from different
directions can be conflicting. A classical case is an intersection with traffic control lights that turn green one
by one of are controlled via inductive loops in the road.
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Traditional TLC with inductive loops and local decision-making. o\
Figure 8. Classical intersection where traffic is controlled with traffic lights.

A recent development in the Smart Mobility domain is the adoption of CPS. Sensor signals, but also geo-data
from connected vehicles are sent to the cloud where a traffic control application controls the traffic lights.

A standardization is ongoing for a Cooperative Intelligent Transportation Systems (C-ITS) Day-1 use cases as
defined by the European Union: traffic light optimization, traffic signal priority and Green Light Optimal Speed
Advice (GLOSA). These use cases have led to new value chains for traffic light control.

e Service providers of in-vehicle applications are now able to inform their customers about the actual
and predicted signal states (time-to-green, time-to-red) and translate this into a Green Light
Optimized Speed Advisory (GLOSA), creating extra value for their services.

e Logistic companies, public transportation and other modalities are able to get a higher priority at
signalized intersections, reducing delays and fuel consumption.

e Better optimized traffic lights for traffic flows have a positive impact on the liveability in urban areas.
The traffic throughput can be increased, while at the same time emissions (CO2, NOx, etc) are
reduced.

The overall CPS consists of multiple layers: Traffic Light Controller (TLC) Facilities, ITS Applications, Cloud
Services and Information Services. The communication between the different components of the CPS makes
use of the latest international ETSI standards (CAM, SRM, SSM, SPaT, MAP, TLC-FI and RIS-FI) for sharing
information between the different systems and services. These ETSI standards are globally recognized,
making cross-border cooperation between systems and vehicles possible (very relevant for international
transport!). The way in which these standards are incorporated in the Talking Traffic architecture is adopted
by C-Roads. C-Roads is an international organization of road authorities representing the most European
countries, both also Israel and Australia. This means that the developed architecture, products, and services
can be implemented with minimal effort in these countries.

Version Nature / Level Date Page
V1.0 R/PU 30/05/2024 38 of 62



D38 (D2.3) Techniques and Methodology toDAg:SIyse and Transformation towards |

TRANSACT

—gey5 >
RIS-FI

Service Prowder

s

=

Figure 9 CPS architecture (simplified)

ITS Application

In the CPS, the ITS Application is the service responsible for scheduling green phases for the controlled
intersection. Both traditional data (loop detectors) and information from connected vehicles are used as
input to schedule green phases in advance, allowing them to be broadcasted to arriving vehicles for the
GLOSA use case.

The higher the penetration rate of connected vehicles is, the better the three use cases can be executed.
Currently the quality of the GLOSA service is low as the penetration of these connected vehicles via in-car or
smartphone systems is less than 20%. Please note that this only applies to vehicles, for pedestrians and
cyclists there is limited to no data available.

To improve the penetration grade, ViNotion developed a visual sensor that can measure the status of all
vehicles from the side of the road. On a larger distance from the traffic light, the vehicle position and
timestamp are registered, including the speed and the type of vehicle.

5.3.2 Trade-offs for the CPS

The transition from a conventional traffic control systems toward a CPS has many benefits:

e Having more information about the approaching traffic toward an intersection allow a more
optimized green-schedule to improve the traffic flow.

e Controlling multiple interactions for a whole area, from a centralized controller in the cloud, allows
overall traffic control to optime traffic flows on a macroscopic level.

e Gathering information from multiple sources such as inductive road loops, floating car data, weather
conditions, pollution conditions, etc. are more ease to collect via loT with a centralized application in
the cloud.

e New sensors such as cameras with Al for object classification allow the application to include cyclist
and pedestrians.

e Any policy can be implemented or dynamically changed. For example, if fine dust or CO2 levels are
too high, the traffic controller can prioritize trucks because stopping and accelerating truck produce
more emission.

e A cloud application with standardized interfaces to connect with the physical world allows any
supplier to provide the traffic application software.
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e Maintenance, improvements, and enhancements of the traffic application is easy to deploy with a
cloud application.

The main trade-offs between a local traffic control system and a CPS-based traffic control system are the

following:

= Safety: conflicting traffic-light schedules must not cause dangerous situations. Using a CPS-based
system adds additional risks on availability because the Internet and wireless communication are
shared resources that are under control by 3™ parties. These risks can be mitigated as follows:

The physical on-site traffic control hardware should comprise a local control application as
fallback if availability of the cloud-based application is jeopardized.

The performance of a CPS from a supplier should be exposed to a strict certification process
to proof that the availability and fallback implementations are well-covered.

= Latency: The control loop must be fast. Information from the sensors that is sent to the cloud-based
application via a broker over the Internet and the feedback signals to control the traffic lights should
enable green/red lights in phase with the traffic. To mitigate this risk, the following measures can be

taken.

The maximum end-to-end latency is standardized. Late messages are ignored.

If the messages are ignored the quality of the traffic control is reduced. The supplier of the
system will be held responsible. Non-compliance is punished by the broker and means the
supplier cannot deliver its service to the customer.

= Costs: Processing and communication should be optimized.

As explained above, a cloud-based application has many benefits. Another advantage is that
resources in the cloud can be shared with other applications at times that the traffic control
application is not using the resources. However, Al-based video analysis is performed 24/7
with a fixed amount of compute resources. It appears that hosting this task in the cloud is
relatively expensive as opposed to computing on the edge.

As mentioned above, local video analysis prevents the need for expensive cloud resources
24/7. Moreover, video data is instantly converted to traffic data which does not contain
personal information. Hence, the privacy of people is protected.

The traffic data comprises a relatively small amount of data communication as opposed to
video data. Consequently, edge processing limits the amount of data is significantly reduces
the data bandwidth for communication to the cloud. This is another cost saving.

5.3.3 Transition toward CPS

A CPS-based traffic control application and an Al-based camera as sensor to collect data about all traffic
participants near an intersection allows advanced traffic management as mentioned above. Figure 10 shows
how all traffic participants are observed by road slide cameras that contain an edge device for video analysis.
The data is transmitted to a cloud-based traffic control application.

To implement such a system, additional constraints on latency and availability are introduced. Typically, the
local traffic-control equipment also hosts a relatively simple traffic controller, next to the connectivity
towards the cloud application. This local controller implements a fallback control for cases where the latency
and availability constraints are not met.
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Figure 10. An Intersection CPS-based traffic control with traffic lights.

In addition, the local controller allows the road authority to upgrade traffic control systems to be cloud ready.
Also, newly built intersections with traffic control equipment can use the cloud-ready equipment. If only
inductive loops for traffic detection are used and other data sources are not exploited, the connection a
cloud-based traffic control application is limited. Once the road authority decides to implement special
policies, a cloud-application provider can easily connect to the traffic control equipment and take over the
control.

Because the additional price for cloud-ready traffic control equipment is limited, most road authorities
choose this option to be future ready. They can easily start with a traditional traffic control and easily switch
to a cloud-based control.

The standard allows a road authority to choose between different suppliers of traffic control applications to
stimulate a competitive ecosystem of suppliers. As such, ViNotion provides the edge-based traffic camera to
collect traffic data which is completely independent of the traffic control application that exploit the traffic
data.

5.4 Cloud-Featured Battery Management System (AVL)

The design and development process (see left side of the “V” in Figure 3) can be considered from three
different points of view (Martin Glinz 2024), also named domains (see

Figure 11):

- Requirements Domain
- Behavioural Domain (a.k.a. functional or logical)

- Physical Domain
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Figure 11: The three domains in systems engineering.

All three domains need to be aligned with each other.

According to the International Requirement Engineering Board (IREB), requirements are categorized in two
groups: functional requirements and quality attributes (IREB n.d.). While the functional requirements cover
the behavioural domain, the quality attributes strongly define the overall software architecture and are
mainly reflected in the physical domain. In this project, however, the target architecture is already defined.
Hence, the task is then rather to decompose the existing (or new) function and assign it to the corresponding
tier and physical architecture element.

The following description provides a guideline for this decomposition and mapping process in the context of
the automotive use case. Table 4 lists the most relevant quality attributes.

Table 4: Quality attributes relevant for software architecture design decisions.

Quality Attributes | Description

Adaptability Describes the ability of a software system to be modified or extended easily to meet
changing requirements or environments.

Extensibility Describes the ease with which a software system can be enhanced or expanded
through the addition of new features or functionalities.

Interchangeability | Refers to the ability of components or modules within a software system to be
replaced or substituted with alternative implementations without affecting overall
functionality.

Interoperability Describes the ability of a software system to interact and operate seamlessly with
other systems or components, regardless of differences in platforms, languages, or
protocols.

Maintainability Indicates the ease with which a software system can be repaired, modified, or

updated over time, typically measured in terms of code readability, documentation,
and architecture.

Performance Refers to the speed and efficiency with which a software system executes its
functions and processes data.

Persistency Persistency in software refers to the ability of a system to retain data and state
across different sessions or instances of execution. It involves storing data in a way
that survives system restarts, shutdowns, or failures. This ensures that valuable
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information is preserved and can be accessed later, providing continuity and
consistency to the user experience.

Reliability Ensures that a software system consistently performs its intended functions
correctly and predictably under various conditions, without unexpected failures or
errors.

Safety Ensures that the software system operates reliably to minimize risks of harm or

damage to users, equipment, or the environment.

Scalability Indicates the ability of a software system to handle increasing workload or growing
user base without compromising performance.

Security Ensures that the software system protects data and resources from unauthorized
access, modification, or destruction.

Standards Refers to the adherence of a software system to established industry or regulatory
Compliance standards, ensuring compatibility, interoperability, and quality assurance.
Testability Describes the ease with which a software system can be tested to verify its

correctness, functionality, and performance, typically facilitated by modular design
and comprehensive test suites.

Timeliness Timeliness in software refers to the ability of a system to respond or produce results
within a specified timeframe or within an acceptable period. It's often associated
with real-time or near-real-time systems where actions or responses must occur
within strict deadlines to maintain usability, effectiveness, or compliance with
requirements.

The approach comprises the following steps:
1. Physical decomposition of the system.
2. Assessment of the physical elements according to quality attributes.
3. Functional decomposition.
4. Mapping of functional and physical domain w.r.t quality attribute.

For the sake of simplicity, the mapping with the Requirements Domain is skipped. However, the functional
requirements are considered implicitly in the context of the functional analysis and decomposition.

Example: Computation of DC-Resistance of the Battery Cells.
Use Case: An algorithm shall compute the individual DC cell resistance of the battery pack.
1. Physical Decomposition of the System:
Device Tier: Battery Management System (BMS; embedded system)
Edge Tier: LTE Gateway
Cloud: Cloud System
2. Assessment of the physical elements according to quality attributes.

Assessment scores are shown in Table 5.
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3. Functional Decomposition:

a. Read cell voltages and current.

b. Store data persistently.

c. Compute cell resistance.

4. Mapping of functional and physical domain w.r.t quality attribute.

By comparing the needs of the functions and the assessment of the quality attributes per tier, one
can identify the following best overlaps:

o Read shall be allocated to the BMS.

o Store shall be allocated to the Cloud.

o Compute shall be allocated to the Cloud.

Table 5: Assessment of quality attributes per physical component and function: Assessment score ranges
from 1 (very good) to 3 (poor); need from the functional view ranges from 1 (very important) to 3 (minor

relevance).

Physical Domain

Functional Domain

Quality Attribute BMS Gateway Cloud Read Store Compute
Adaptability 3 2 1 3 2 1
Extensibility 3 2 1 3 2 1
Interchangeability 3 2 1 3 3 3
Interoperability 2 2 1 3 3 3
Maintainability 3 2 1 3 2 1
Performance 3 2 1 3 1 1
Persistency 3 2 1 3 1 1
Reliability 1 2 2 1 2 2
Safety 1 2 3 3 3 3
Scalability 3 3 1 3 1 1
Security 3 1 1 3 1 1
Standards 1 3 3 1 3 3
Testability 3 2 1 3 1 1
Timeliness 1 2 3 1 2 2
Summary

The demonstrated approach shows how functional and physical domain can be mapped. It is noteworthy
that there may also be other design decisions besides of the quality attributes, e.g. the clustering of

consecutive functions.
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5.5 Build once, run anywhere for medical software (PMS)

5.5.1 Problem description

The medical domain is highly regulated. This regulation and the fact that healthcare providers tend to be risk-
averse make the introduction of new compute platforms like edge and cloud slow. A design that is completely
tailored to work on an edge or cloud platform would require adoption of these new platforms. Due to the
slow adoption and the hard requirement for the new platform, this could reduce the rollout pace which in
turn reduces revenue. Often development is pushed into a mode where one solution can be offered to all
customers, which could result in either innovation slowdown or additional costs due to multiple different
implementations.

5.5.2 More than just containers

The slogan “build once, run anywhere” is derived from the slogan "Write once, run anywhere” created by
Sun Microsystems in 1995 for their cross-platform Java language. Recently this phrase has been expanded to
include containers, meaning that developers can package their entire application and all its dependencies in
a container and run it anywhere.

This is a nice theory, but large (medical) applications tend to consist of a lot of components and have many
external dependencies (e.g., databases, devices). So, by just wrapping all the software in a single container
we don’t solve those problems. This is why for new product developments, we strive for a microservice
architecture with well-defined interfaces. These new architectures are than be mapped onto different
platform configurations to verify which options are viable and whether the interaction patterns can work
given the constraints the different platforms have.

5.5.3 Decouple development from cloud adoption

Due to this new architecture, including mapping on the different platforms, we are now able to start
development of cloud native/ready applications without requiring our customers to onboard to the cloud.
This makes our products future-ready, where initially local deployments (only using the device tier) will be
the default, but eventually more and more functionality can move to the other tiers. 45his can happen
without major rework of the components, hence “build once, run anywhere”.

It is critical for new innovations that development teams get familiar with the new architecture and way of
working. This ensures that the teams can focus on the new (medical) innovations and don’t have to worry
about where their applications are running.

5.5.4 Demonstrator

New features, which usually require more advanced computation capabilities, will be introduced on edge or
cloud tiers. In use case 4, a demonstrator is built showing a cloud-based reconstruction application. In this
demonstrator, the components have been decoupled, allowing for fast updates and innovations of the used
algorithms. An added feature in this demonstrator is a web-based viewer hosted in the cloud. This allows
both local and remote viewing of the acquired data in a 3D viewer in the browser.
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5.6 Cloud-based solutions for medical image exploration (PST)
5.6.1 Use Case Introduction

In patient diagnosis and treatment planning, image acquisition devices such as CT and MR devices create
image data of the patient anatomy. For efficient treatment planning this data should be easily available for
analysis by health care professionals in a diverse set of applications. Currently, however, most processing is
done on the image acquisition device, which limits the number and types of applications that can easily use
the data. By introducing an edge/cloud platform that includes the image acquisition device, easy data access
for other applications can be extended, without changing the properties of the image acquisition device.

Vesalius3D is a medical visualization software application used in healthcare for interpreting medical imaging
data, such as CT scans, MRI images, and ultrasounds. It is thus an example of a third-party application that
would benefit from such an edge/cloud platform. Vesalius3D users can create insightful patient specific
anatomy visualizations medical from medical image data. These 3D visualizations emphasize the regions of
interest of the patient specific anatomical structure and exploration with intuitive navigation tools can yield
important insights in the patient’s condition. Traditionally, only the radiologists and surgeons benefit from
these insights. A cloud deployment of Vesalius3D can open exploration of the 3D visualizations to a larger
group of the health care chain. The visualizations and insights can then be shared along a larger range of
stakeholders in the patient’s treatment path, ranging from the radiologists and surgeons to e.g.
physiotherapists, general practitioners, and of course the patients themselves. Through the increased shared
understanding of the patient’s condition, the treatment path can then be better optimized.

Ensuring smooth interaction with Vesalius3D is one of the key challenges. It is crucial for users to effortlessly
navigate the 3D visualizations to the correct viewpoint of their region of interest to gain insights of the
patient’s condition. However, Vesalius3D’s volumetric rendering demands substantial GPU rendering power,
which is often unavailable in conventional workstations and acquisition devices. Smooth interaction can be
achieved by leveraging the edge/cloud platform to deploy Vesalius3D on workstations with powerful GPUs
on the edge or the cloud.

5.6.2 Trade-offs between visualization on edge or cloud

Edge and cloud deployment of Vesalius3D have different benefits and challenges. In the edge deployment
(Figure 12), powerful non-standard workstations are deployed in the hospital environment. Healthcare
professionals perform their analyses with Vesalius3D on these workstations. If the workstations need to be
shared with multiple people in the department, dedicated physical work locations also need to be allocated.
For the cloud deployment (Figure 13), Vesalius3D is embedded within the Philips IGT Cloud Platform. Any
workstation with access to the cloud platform can then work with Vesalius3D.

Device Tier Edge

Vesalius3D

Scanner

Figure 12: Platform deployment of Vesalius3D on the edge.
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Figure 13: Platform deployment of Vesalius3D in the Philips IGT Cloud Platform

Appstream

The main trade-offs to consider between these solutions are:

e Smoothness of Interaction
e Development Process

e Scalability
e Application access
e Costs

Smoothness of Interaction
The smoothness of the interaction is determined by two factors:

e The GPU of the workstation.
e The time latency between user input and the response.

To ensure smooth interaction, Vesalius3D’s responses to user interaction should appear smooth in motion.
Given that Vesalius3D’s visualizations utilize volumetric rendering, refreshing and updating these in real-time
puts strain on the GPU of the workstation. Thus, achieving smoothness in motion requires Vesalius3D
workstations to have advanced GPUs capable of processing volumetric renderings efficiently. For both the
edge and cloud deployment, smoothness can be achieved by selecting workstations with appropriate GPUs
for Vesalius3D. In edge deployment, this may increase the upfront investment costs, while cloud deployment
will incur higher variable usage costs.

In edge deployment latency between the user input and the responses is typically minimal due to the direct
connection to the workstation. The latency in cloud deployment is, however, depends largely on the
deployment’s physical location and internet connection quality. To optimize smoothness of interaction, it’s
preferable to deploy the cloud infrastructure close to the customer’s location.

Scalability

Scalability for Vesalius3D is the ability to modify the number of users that can work with Vesalius3D. Having
better scalability can allow different product offerings, such as temporary additional work seats for a limited
amount of time.

Edge deployment is not very scalable. Every user claims a workstation for the whole Vesalius3D session. Thus,
scaling up the number of users that can work with Vesalius3D at the same time would involve acquiring
additional workstations and deploying them. This is costly and can easily take days to weeks. Scaling the
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number of users down can be more easily achieved by reducing the number of Vesalius3D licenses. In the
case of dedicated shared workstations, the workstations also need to be repurposed or removed to free the
office space.

In contrast, cloud deployment is very scalable. Following an onboarding process, in which the hospital IT
departments define user access to the cloud platform, users can initiate and terminate sessions as needed.
This flexibility allows Vesalius3D to be offered as a pay-as-you-go service. This approach opens opportunities
for Vesalius3D to reach new customer segments at the very end of the health care chain, consisting of those
that may not frequently work with medical images, but can benefit from the insights of their 3D visualizations,
such as the physiotherapist or the general practitioner.

Application Access

Vesalius3D excels in providing clear visualizations of patient-specific anatomical structures, making it well-
suited for treatment planning discussions and patient education. For these scenarios easy application access
is essential.

In the edge deployment scenario, Vesalius3D is limited to use on the deployed workstations, restricting any
discussions about patient cases to the physical location of these workstations. This limitation narrows down
the available locations for workstation placement, potentially affecting accessibility and collaboration.

The cloud deployment removes this constraint, allowing Vesalius3D to be accessed from any workstation
connected to the cloud platform. This enhances flexibility and accessibility, facilitating discussions at various
locations within the healthcare facility or remotely. Additionally, reports and visualizations can be more easily
shared with the patient and the other healthcare practitioners involved with their care. The subsequent
enhanced understanding and recall by both patients and the healthcare practitioners can contribute to more
efficient and productive meetings about the patient’s condition and ultimately to improved treatment
outcomes.

Costs

Cloud deployment incurs different fixed and variable costs compared to edge deployment of Vesalius3D.
Edge deployment requires an upfront investment in powerful workstations and additional physical
workspace. Afterwards, the fixed costs consist of licensing and software maintenance. Variable costs can
occur due to customized workstation maintenance and repairs, both of which will have to be carried out by
the hospital’s IT department.

Cloud deployment does not require special workstations, thus an upfront investment for an existing hospital
is most likely not required. The fixed costs will cover licensing, software maintenance and the maintenance
of the cloud platform by the cloud platform provider. Variable costs consist of the costs incurred by using the
cloud infrastructure. These variable cloud costs can greatly exceed expectations if care is not taken to ensure
that the customer’s use of Vesalius3D stays reasonably close to the initial estimates.

The direct costs of cloud deployments will likely be higher than the direct costs of edge deployment for most
customers. However, some of these costs can be justified by cost reductions elsewhere. Maintenance and
update procedures will for example no longer involve the IT department. Since special workstations are not
required on site the customer can be more efficient with physical office space. And through increased
understanding of their condition, meetings with patients can be more efficient.

5.6.3 Transition toward CPS

To tap into new market segments at the end of the healthcare chain, Vesalius3D should adopt cloud
deployment. This approach offers scalability, smooth interaction, and the flexibility to use Vesalius3D
anywhere. These features do not only enhance Vesalius3D for the current users, but also provide the means
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to develop products tailored to users that would only consult the patient specific anatomy visualizations
sporadically.

A practical transition could be based on the Use Case 4 demonstrator involving Vesalius3D. The demonstrator
is based on the architecture displayed in Figure 13 and embeds Vesalius3D in the Philips IGT Cloud Platform.
A lightweight communication layer was implemented around Vesalius3D to enable data transfers from the
IGT data lake. This facilitated a swift migration, allowing for early testing with a nearly feature-complete
Vesalius3D.

The next step in the transition involves an analysis of the business case. The technical considerations must
be aligned with business and product objectives to check whether a viable business model can be found.

5.7 Discrete Event Simulation for Edge-Cloud-Based Clinical Application
Platform (PFLH)

5.7.1 Use Case Introduction

Use case 4 explores how the TRANSACT methodology can be applied to improve workflow and
interoperability in and between hospitals. In this context, Discrete Event Simulation (DES) has been
investigated as a method to simulate clinical workflows and to guide the transition towards an Edge-Cloud-
based clinical application platform.

Diagnostic imaging systems are safety-critical applications that require careful consideration. In the past,
image guided therapy (IGT), computed tomography (CT) and magnetic resonance imaging (MRI) systems,
have been developed and designed as self-contained systems. To guarantee optimal responsiveness even in
times of peak loads, tightly integrated compute resources have been employed to control data acquisition,
image formation and processing. While certain functionalities, such as those related to interventional
imaging will continue to be integrated into the device, many of the aforementioned systems offer potential
for virtualization and deployment on the edge or in the cloud. This will improve resource utilization, enhance
scalability, flexibility, and accessibility, paving the way for the development of future innovative solutions.

In the context of other clinical systems, such as Picture Archiving and Communication Systems (PACS) and
diagnostic workstations, there is already an ongoing trend toward cloud-based solutions for storing and
processing medical image data.

However, when it comes to workflow and performance aspects, it is crucial to consider not only individual
systems and their deployment across the TRANSACT tiers but also their interrelations. In this context DES is
a powerful methodology that can be used to explore performance trade-offs and to identify optimal
deployment strategies. It can help to identify sweet spots for deployment and ensure that the necessary
workflow and performance requirements are met.

5.7.2 Transition Towards CPS

When considering diagnostic imaging, the clinical workflow is complex and involves multiple stakeholders,
including patients, technicians, interventionalists, radiologists, as well as various technical systems, such as
the imaging equipment and diagnostic workstations and image archives.

Virtualizing software components and functionality in the diagnostic workflow using the TRANSACT reference
architecture offers a broad range of benefits. By removing the dependency on (often underutilized) local
resources and enabling easy access to edge and cloud resources, resource utilization will become more
efficient. The adoption of distributed CPS allows for the integration of new functionalities beyond the current
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resource constraints, while ensuring easier maintenance through updates and facilitating the integration of
3rd party solutions. Additionally, the adoption of cloud storage can improve the availability of data, thereby
leading to better data exchange, streamlined workflows.

The distribution of computational tasks across the three tiers of local, edge, and cloud infrastructure requires
a trade-off of several competing aspects, including speed, system reliability and availability, transmission
bandwidth, cost. As far as safety-critical systems are concerned, such a trade-off will usually need to be
evaluated for individual events, rather than on an average basis. For example, in a clinical environment
employing a distributed architecture for diagnosis and treatment systems, it must be ensured that the health
conditions of each individual patient are considered in the trade-off of speed and reliability of data analysis.
Optimizing just the average result turn-around time may have severe consequences for individual emergency
cases.

Methods used for analysing and optimizing these trade-offs within distributed architectures must therefore
work based on individual cases instead of or in addition to statistical descriptions. DES is a method that is
particularly suited for the simulation of complex processes on an individual event basis.

Clinical processes in radiology and image guided therapy (IGT) are complex and interwoven. Due to the
interdependency of clinical resources, delays in one procedure step can have an impact on the whole
remaining schedule and even on the quality of care of other patients. Workflows may need to be adapted
and reordered on the fly, for example to prioritize emergency cases. At the same time, the need for
computational power increases, as more complex image reconstructions and evaluations are integrated in
diagnosis and decision making. The interdependencies within the clinical processes and the different
requirements for result turn-around times need to be considered when distributing computational load
across on-premise, edge, and cloud infrastructure.

A thorough understanding of the clinical processes and methods to simulate and predict the impact of
computational load distribution are therefore essential for a successful transformation from today’s tightly
coupled integrated on-premise devices towards flexible DCPS architectures. At the same time, it is important
to have already reliable predictions for scaling the architecture to cover future computationally intensive
technologies, such as advanced medical image processing.

5.7.3 Clinical Process Modelling and Discrete Event Simulation

The task of modelling and simulating clinical processes is challenging. One challenge is that the required
information about real-world processes is not easily accessible. Hospital IT environments can be quite
inhomogeneous, making it difficult to extract time stamps of operational events. While some operational
information is only available within individual medical devices (such as image reconstruction events
performed by a medical imaging system), others are stored in hospital-wide IT systems (such as time stamps
of patient arrival or report submission in a hospital information system). Some prior descriptive analysis
studies have relied on log data extracted from individual imaging systems to evaluating system utilization
(Gunn 2017), and statistical analysis of diagnostic imaging workflow steps (Frydrychowicz 2021), others have
used less granular data from radiology information systems (Zhang, Narra and Kansagra 2020) or picture
archiving systems (Talati, Krishnan and Filice 2019). The combination of clinical data sources has enabled
better prediction of some workflow details, for example radiology slot time prediction (Wang, Nikkhou Aski,
et al. 2024), (Avey, et al. 2019) or complexity prediction of radiologic procedures (Wang, Uhlemann, et al.
2024), but these approaches are not easily scalable because of the difficult data access.

Another challenge lies in the complexity and the interdependencies of clinical processes. The descriptive
analyses and workflow step predictions presented in the above-mentioned references are all based on
statistical averages, but do not consider the dynamics and interdependencies of each individual workflow.
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For the purpose of DCPS transition analysis, a dynamic simulation of the processes and resources is required.
This can be achieved by a DES approach, in combination with a process and resource model that incorporates
knowledge of workflow step durations found by statistical analysis of real data as described above. The
process model itself can be designed with modelling frameworks such as the Business Process Modelling and
Notation (BPMN) framework, although care must be taken to adapt the modelling language to the specific
characteristics of clinical processes (Pufahl, et al. 2022).

DES evaluates the propagation of one or several “tokens” through a pre-defined process, while using random
distributions to mimic decision points and delays in the model. In the clinical process example, a token could
represent a patient undergoing a journey through a clinical procedure, or a piece of information being passed
through different procedure steps. DES is an established modelling method in the healthcare domain and its
usage has been observed to increase particularly in health and system operations during the past decade (X.
Zhang 2018). This includes applications in the operational planning of interventional radiology (Tellis, et al.
2021).

5.7.4 Example Implementation of DES for CPS Transition Analysis
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Figure 14: Components and data flow of the simulation pipeline for spectral CT reconstruction. The
simulation covers two reconstructions paths: One using on-remise resources and the other using cloud-
based resources.

The simulation study for spectral CT reconstruction serves as an example of an application of DES for guiding
the transition to distributed systems in the clinical domain (see also D33/D3.5). The simulation has been
specifically designed for a “sweet spot analysis”, i.e. for determining how to distribute demanding
computational tasks for medical image reconstruction across the three tiers in such a way that the
requirements for report turn-around times (RTAT) for each patient can be met.

Figure 14 provides an overview of the simulation pipeline used in this study. Patients are scheduled for a scan
based on the simulation profile. The raw data is then sent down one of two paths, either using on-premises
resources or cloud-based resources. In the on-premises option, the data generated by the scanner is sent to
a processing unit hosted by the hospital's IT department. The resulting DICOM image is transmitted to a PACS,
so that they can be read and reported by a radiologist. In the cloud option, the raw data is sent via an edge
device to a compute cluster where the reconstruction is performed. All aspects of the simulation are
configurable, including computing resource availability (with dynamic scaling and load balancing of cloud
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resources), network bandwidth, and patient profiles. The simulation also supports trauma patients requiring
urgent imaging. The simulation records timestamps for each patient/exam to monitor and analyse resource
utilization and network performance.

The results of such a simulation for an exemplary 8-hour hospital shift are shown in Figure 15: The upper plot
represents a situation where image reconstruction tasks are performed only on insufficient on-premise
computational resources. The data points off the blue diagonal line indicate cases that do not meet the RTAT
requirements. Since several emergency cases needed to be prioritized, many other imaging reports had to
be delayed. The lower plot shows how the same patient cases under the assumption that some less-critical
reconstruction tasks could be off-loaded to a cloud service, while the critical emergency cases were still
reconstructed with high priority on on-premise resources. Here, the balance of compute resources led to a
situation where all reports could be delivered within the prescribed time window.

This study highlights the effectiveness of DES for analysing and designing distributed CPS in complex and
safety-critical clinical environments. DES facilitates the modelling of site-specific characteristics,
implemented workflows, and technical boundary conditions—such as available bandwidth and required
computing resources. This capability enables the evaluation of various deployment scenarios on a use-case
basis and supports the selection of optimal deployment strategies.
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Report Turnaround Time

Figure 15: Simulation results of reporting times of spectral CT examinations (see also D33/D3.5). Start of
the image acquisition and availability of the data in the PACS are depicted by dots. To meet the RTTA
constraints, the data must be available in a 20min time windows, indicated by the orange bars. Upper: On-
premise processing with insufficient compute power; Lower: Combined on-premise and cloud computation
with a prioritization based on clinical urgency.

Version Nature / Level Date Page

V1.0 R/PU 30/05/2024 53 of 62



D38 (D2.3) Techniques and Methodology toDAg;SIyse and Transformation towards |

TRANSACT

5.8 Design Space Exploration with Genetic Algorithms (ITI)

One of the major challenges when designing and maintaining a complex distributed CPS is that there are
often several conflicting design objectives and constraints. For example, we might require the system to have
a small response time, but this would require a high-performance processing node or perhaps several parallel
processing nodes, which in turn requires more cost and power consumption. Thus, there is a great need for
design and analysis tools which can assist the engineer in exploring and evaluating different system
configurations at design time (and possibly at run-time as well).

There are important applications where the operating environment is dynamic. The TRANSACT architecture
permits the offloading of functions from the device to the edge or cloud tiers when Service Level Objectives
(SLOs) thresholds are not met. For that, it employs services to monitor and measure the Service Level
Indicators (SLI) and the use of an Operational Mode Manager and Coordinator to decide at run-time the
proper operational mode to be executed. In such a case the optimal CPS configuration needs to change to
reflect the different operating conditions.

To this end ITI has investigated and developed some novel techniques to assist in the design and performance
analysis of these types of CPS. In particular, ITI has created a multi-objective, non-linear constrained
optimisation tool which uses a genetic algorithm to explore the assignment of functions (or tasks) to
processing nodes with the goal of achieving certain performance objectives which satisfy defined design and
operating constraints. A block diagram of the optimiser architecture is shown in Figure 16.

Application
Model
(r—
Performance
ngg —p-  Analysis
Computations
 —
Deployment Optimisation
Model Algorithm

1

Figure 16: Architecture of the Design Space Explorer
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The design space exploration architecture consists of several components:

This is a global model of all the software that is running on the CPS. It is represented
as a graph data structure. Nodes represent each function, while edges represent the
Application Model | calls between functions. Each node has a set of properties, for example the worst-
case execution time of the task. (An example application graph is shown in Figure
18.)

This is a global model of all the hardware in the system. Again, we represent this as
a graph network. Nodes represent the processors and devices, while the edges
model the communications links and buses that transfer data between the
Platform Model processors and devices. Properties of the nodes might include information such as
CPU type and speed, the task scheduling algorithm in use, power consumption etc.
Properties of the graph’s edges might include communication bandwidth and
latency, for example. A typical platform model graph is shown in Figure 16.

The deployment model defines the processing nodes assigned to each task. It is this

Deployment Model artefact that is to be searched for by the optimisation algorithm.

Performance The Performance analysis computations define the targets of the optimisation. We
Analysis can identify several non-functional quantities to me optimised: e.g. response times,
Computations power consumption, data throughput, financial cost, and so forth.

The goal of the optimisation algorithm is to search for a suitable deployment model
that optimises the performance analysis objectives. In most cases there will be two

Optimisation . - . .
or more competing objectives: for example, data throughput vs financial cost. In

Algorithm . oL . .
& addition, the optimisation algorithm must ensure that the resulting deployment
model satisfies certain defined constraints (e.g. deadlines must be met).
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Figure 17: Typical CPS Platform Model (dark blue: edge devices, green: gateways, cyan: fog processors, red
cloud servers). Properties are assigned to each processing node and communications link. The numbers
show in this graph represent the latencies of the communications links and resources available at each

node.

‘caowoxo

caovo

Figure 18: Typical Application Model Graph. This figure shows a set of software tasks and how these tasks

are initiated by events resulting from the completion of preceding tasks.
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Within such a system there arises the problem of finding the best processing nodes to locate the functions.
A function might be located in the edge tier so that communication latency from devices is minimised, but
this can be at the expense of time required to complete the software task because edge devices are most
likely not as powerful as the CPUs or GPUs used in the cloud tier.

To this end we developed a high-level model for such a CPS, composed of two parts. Firstly, there is a model
for the hardware platform of the system (platform model — Figure 17). This is effectively a graph data
structure where the nodes are the processing elements, and the edges are the communications links. We
then assign properties to each node and edge of the graph. For the processing nodes the properties might
include items such as, for example, CPU & memory resources, clock speed, power consumption, and financial
cost of use. In the case of the communications links the properties would include latency and data throughput
rates.

The second modelling component, the application model (Figure 18) defines how the software functions are
allocated to the processing nodes and how these software functions communicate with each other (i.e. the
call graph). This software model also contains properties such as time required to execute the task, the
deadline for completing the task, the resources required by the task (e.g. memory) and so forth.

Given these system properties we then developed a set of algorithms for computing non-functional
performance metrics for the global system architecture. These metrics include latency between issuing a task
request and receiving a response, overall power consumption, and financial cost. We also developed an
improved version of the compositional performance analysis (CPA) algorithm to compute these metrics.
Some possible performance objectives are shown in Table 6.

The CPA algorithm is used to compute the response times of each task. This algorithm first examines each
processing node and uses the particular scheduling algorithm assigned to that node along with a specification
of the triggering events for the functions running on that node to compute the expected response times of
each task. These response times are propagated to subsequent tasks running on other nodes to define the
triggering events for those services. A top-level iterative loop repeats this process until convergence is
achieved.

Table 6: Performance objectives to be optimised

Performance Metric Objective
Latency Minimise
Data Throughput Maximise
Financial Cost Minimise
Power Consumption Minimise

We also identified a set of constraints defined by the application requirements. Such constraints might
include a specification that certain software functions are only allowed to execute on certain processing
nodes. In addition, there are usually timing constraints such as certain functions must complete their tasks
within a certain time frame (hard deadline).

The goal of the design space optimisation is to find a suitable allocation of software functions to processing

nodes such that the performance objectives are optimised, and the constraints are satisfied. Thus, effectively

we have a multi-objective, constrained optimisation problem. To solve this, we developed a genetic algorithm
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optimiser to allocate the software services to processing nodes. This deployment can be captured by a matrix
A = [ai_j], where a; j is the number of instances of software functiona; that are running on processing node
j . Itis the goal of the optimisation algorithm to find this matrix.

Since the problem has multiple competing objectives (e.g. financial cost vs. response time) the output of the
optimiser is a set of potential solutions. These can be depicted by the so-called Pareto Set. An example of
such a pareto set is shown in Figure 19 (Objective 1 is latency and Objective 2 is financial cost). This plot
shows several potential solutions to the optimisation problem. For example, the point to the extreme left
denotes a system configuration which has a cheap financial cost but has a large communications latency
whereas the point to the extreme right has the smallest latency but the largest financial cost. It is

subsequently left up to the system designer (or perhaps an Al system) to decide on the best solution
according to requirements.

Pareto front

N *

v
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-
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Objective 1
Figure 19: Pareto Front After Optimisation
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6 Conclusions

This deliverable highlights key contributions of Task 2.3 within the TRANSACT project, providing insight into
the transition from conventional Cyber-Physical Systems (CPS) into distributed CPS (DCPS) solutions, with a
special focus on trade-off analysis and generic development principles.

The introductory section offered an overview of Work Package 2 (WP2) and its associated tasks and described
the role of this document and its relationship to other deliverables. It also included a discussion of generic
methods for modelling and analysing DCPS, supplemented by an overview of the distributed solution
architecture developed within the scope of the TRANSACT project.

As a contribution of this deliverable, the Transition and Validation Methodology (T&V?) was introduced - a
theoretical framework for the migration of monolithic systems to distributed solutions over the edge-cloud
continuum. T&V? is based on the T&V methodology, focusing on a holistic view that considers technical
aspects, operational changes, legal obligations, and business constraints. The T&V? methodology emphasizes
the deployment and maintenance of the solution, specifying requirements for migration activities, and
considers data from these processes to drive the specification of requirements. The methodology follows a
stepwise process, starting with given systems and ultimately defines technical requirements, migration plans,
and requirements from operational, legal, and business perspectives.

Thereafter, driven by the individual use-cases, different aspects of the task objectives (cf. Table 3, p. 13) were
explored by the TRANSACT partners. These address challenges across all stages of the transition, from system
design and optimization to implementation and operation, which is reflected in a multifaceted set of
contributions. To provide a comprehensive view, not only technical aspects were considered, but also legal
and business challenges were taken into account.

These contributions have not only been instrumental in the achievement of the TRANSACT project's goals
but have also offered valuable insights into the complexities of the transition towards DCPS as a whole. They
have enriched the current understanding in the field of DCPS and laid the groundwork for further
advancements.
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