
PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the TRANSACT consortium. Neither this document nor the information
contained herein shall be used, duplicated or communicated by any means to any third party, in whole or in parts, except with the
prior written consent of the TRANSACT consortium. This restriction legend shall not be altered or obliterated on or from this
document.

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 101007260. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Netherlands, Finland, Germany, Poland,
Austria, Spain, Belgium, Denmark, Norway.

Transform safety-critical Cyber Physical Systems into distributed solutions for end-
users and partners

D32 (D6.5)

Open source project proposal

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 2 of 29

Document	Information	
Project TRANSACT

Grant Agreement No. 101007260

Work Package No. WP6

Task No. T6.2

Deliverable No. D32

Deliverable No. in WP D6.5

Deliverable Title Open source project proposal

Nature Report

Dissemination Level Public

Document Version v1.0

Date 26/04/2024

Contact Marco Jahn

Organization Eclipse Foundation Europe GmbH

Phone N/A

E-Mail marco.jahn@eclipse-foundation.org

mailto:marco.jahn@eclipse-foundation.org

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 3 of 29

Authors	Table	
Name Company E-Mail

Marco Jahn ECL marco.jahn@eclipse-
foundation.org

Javier Fernández-Bravo Peñuela ITI fjfernandez@iti.es

Reviewers	Table	
Version Date Reviewer

v0.5 15.04.2024 Wolfram Ratzke, AVL

V0.5 17.04.2024 Mitra Nasri, TUE

Change	History	

Version Date Reason for Change Affected pages

v0.1 06.09.2023 Initial outline & draft All

v0.2 10.10.2023 Updated outline after discussing horizontal demonstrator All

v0.3 24.01.2024 Add chapter on POOSL, open source compliance All

v0.4 19.02.2024 Add chapter on experimentation environment All

V0.5 26.03.2024 Complete all chapters, ready for internal review All

V1.0 26.04.2024 Final version submitted to EC

mailto:marco.jahn@eclipse-foundation.org
mailto:marco.jahn@eclipse-foundation.org
mailto:fjfernandez@iti.es

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 4 of 29

Table	of	Contents	
1 GLOSSARY .. 6
2 INTRODUCTION .. 7

2.1 ROLE OF THE DELIVERABLE .. 7
2.2 RELATIONSHIP TO OTHER TRANSACT DOCUMENTS .. 7

3 PROFESSIONAL, INDUSTRY-GRADE OPEN SOURCE ... 8
3.1 THE BUSINESS VALUE OF OPEN SOURCE .. 8
3.2 OPEN SOURCE IN SAFETY- AND SECURITY-RELEVANT DOMAINS: AUTOMOTIVE INDUSTRY 8
3.3 COMMUNITY-DRIVEN OPEN SOURCE ... 9
3.4 GOVERNANCE ... 10

3.4.1 The Eclipse Development Process .. 10
3.4.2 Creating a vendor-neutral, community-driven open-source project at the Eclipse Foundation 10

4 ECLIPSE POOSL ... 12
4.1 ECLIPSE POOSL OPEN SOURCE PROJECT PROPOSAL .. 12

4.1.1 Background ... 12
4.1.2 Scope ... 12
4.1.3 Description .. 12
4.1.4 Why Here? .. 13
4.1.5 Licenses ... 13
4.1.6 Project Scheduling ... 13
4.1.7 Future Work .. 13

4.2 ECLIPSE POOSL SUCCESS STORY IN OPEN SOURCE .. 13
5 TRANSACT OPEN SOURCE EXPERIMENTATION ENVIRONMENT .. 14

5.1 ECLIPSE RESEARCH LABS .. 14
5.2 HORIZONTAL DEMONSTRATOR: A TRANSACT OPEN SOURCE REFERENCE IMPLEMENTATION 14

6 OPEN SOURCE LICENSES AND IP COMPLIANCE .. 17
6.1.1 Open source license spectrum ... 17
6.1.2 Open source license compliance and large-scale distributed systems .. 18
6.1.3 Eclipse Dash License Tool .. 19
6.1.4 OSS Review Toolkit for continuous license compliance ... 20
6.1.5 Assessment ... 25

7 CONCLUSION .. 26
8 APPENDIX A - REQUIREMENTS FOR A CONTINUOUS COMPLIANCE TOOL 27

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 5 of 29

List	of	Figures	
Figure 1: Eclipse project creation process ... 11

Figure 2 POOSL Enterprise Version ... 13

Figure 3: Eclipse Research Labs ... 14
Figure 4: Ecosystem of open-source technologies for distributed data processing supplied by
Radiatus. ... 15

Figure 5: Mapping of technologies to architectural components in the 3D image reconstruction
demonstrator. .. 16

Figure 6: The software licenses spectrum .. 18

Figure 7: Vetting third-party content with Dash License ... 20

Figure 8: Overview of ORT installation ... 22

Figure 9: List of all checked projects ... 23

Figure 10: Main page of an ORT run .. 24

Figure 11: ORT WebApp report ... 25

List	of	Tables	
Table 1: Terms, Abbreviations and Definitions .. 6

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 6 of 29

1 Glossary	

Term Definition

BDaaS Big Data as a Service

CLI Command Line Interface

CPS Cyber-physical System

CSV Comma separated values

EDP Eclipse Development Process

EMO Eclipse Management Organisation

IoT Internet of Things

IP Intellectual property

ORT OSS Review Toolkit

OS Open source

OSS Open-source software

POOSL Parallel Object-Oriented Specification Language

SCDCPS Safety-critical distributed cyber-physical systems

SDV Software-Defined Vehicle

Table 1: Terms, Abbreviations and Definitions

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 7 of 29

2 Introduction	
This deliverable summarizes the open-source perspective on the TRANSACT project.

TRANSACT is an industry-driven project in the domain of safe and secure cyber-physical systems, a domain
that is characterized by closed, proprietary software and high demands and strict requirements on
certification and safety and security assurance. Traditionally, aspects that don’t foster the adoption and
development of open source tools per se.

In TRANSACT several approaches were investigated to identify potential directions for leveraging the benefits
of open source:

- Eclipse POOSL as an example of professional, vendor-neutral, community-driven open source project

- A horizontal demonstrator implementing the TRANSACT reference architecture in open source,
allowing experimentation in a publicly available open source environment

- An experimental setup of an open source compliance tool for assessing open-source license
compliance in a large, multi-project environment

2.1 Role	of	the	deliverable	
The purpose of this deliverable is to:

- Introduce the idea, benefits, and characteristics of vendor-neutral, community-driven open source
in TRANSACT domains, which are characterized by high safety and security requirements (Chapter 3)

- Exemplify successful, industry-grade open source with the Eclipse POOSL project (Chapter 4)

- Present the open source experimentation environment hosting the horizontal demonstrator as an
open-source reference implementation of the TRANSACT architecture (Chapter 5)

- Report on the experiments for large-scale, open source license compliance (Chapter 6)

2.2 Relationship	to	other	TRANSACT	documents	
This document relates to the following TRANSACT deliverables:

• D26 (D2.4) Reference architectures for SCDCPS v2

• D31 (D5.2) TRANSACT basic horizontal demonstrator

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 8 of 29

3 Professional,	industry-grade	open	source	
3.1 The	business	value	of	open	source	
Open source software accounts for 80 to 90 percent of the code in a typical product, service, or application1.
The remaining 10 to 20 percent come from businesses that adopt open source and use it as a foundation to
differentiate and add value for their customers. These high adoption rates confirm that open source reduces
costs, accelerates time to market, lowers risks, and increases opportunities for innovation.

Some of the biggest winners in our software-centric world are internet platform companies that deliver an
ecosystem of solutions to consumers. According to digital economist Dr. Holger Schmidt, the top 100
platform companies in the world were valued at a total of 15.5 trillion dollars in July 20212. The business
models that platform economy leaders rely on are only possible with open source software. These companies
could not have reached their current scale by purchasing or developing all of the software required to build
and run their businesses.

Many of these organizations also recognize the business benefits of actively participating in open source
software projects. They understand that an effective open source strategy goes well beyond simply
consuming available software. To realize the full business potential of open source, it’s crucial to engage with,
support, and contribute to the communities that produce the software.

In his study, “Learning by Contributing: Gaining Competitive Advantage Through Contribution to
Crowdsourced Public Goods,” Frank Nagle of Harvard Business School found that companies that contribute
and give back to the community learn how to better use the open source software in their own environment,
creating a competitive advantage. According to Nagle, companies that pay employees to contribute to open
source software can boost company productivity by up to 100 percent, compared with companies that simply
use or consume the software. They can also improve their image and their ability to recruit top talent. “As
the technical world is increasingly open source and everybody can use the same types of technology, gaining
these kinds of edges and increasing your competitive advantage is pretty important,” says Nagle.

3.2 Open	 source	 in	 safety-	 and	 security-relevant	 domains:	 automotive	
industry	
Looking at the automotive industry as an example: the first cars were mechanical masterpieces, but didn’t
include anything that even resembles an integrated circuit. As the industry evolved, cars began to leverage
advances in electrical engineering and became more technology-driven. Today, most cars are essentially
computers on wheels. They rely on software running on hundreds of embedded sensors and actuators to
control everything from steering, safety, and fuel systems to advanced touch screens and infotainment
systems. By most estimates, there are already at least 100 million lines of code in most modern, non-
autonomous cars. For comparison, the flight software in a Boeing 787 aircraft requires approximately 14
million lines of code. As the industry shifts to electric and autonomous vehicles, it’s expected that cars will
essentially become servers on wheels with 300 to 500 million lines of code. This massive volume of complex
code is essential for safe and reliable vehicle operation, and to support the software features and
functionality that have become key competitive differentiators.

1 https://www.sonatype.com/hubfs/SSC/Software_Supply_Chain_Inforgraphic.pdf?t=1468857601884
2 https://www.platformeconomy.io/blog/value-of-the-top-100-platform-rises-to-15-5-trillion

https://www.sonatype.com/hubfs/SSC/Software_Supply_Chain_Inforgraphic.pdf?t=1468857601884
https://www.platformeconomy.io/blog/value-of-the-top-100-platform-rises-to-15-5-trillion

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 9 of 29

A future SDV (Software-Defined Vehicle) platform is likely to consist of multiple and exchangeable building
blocks, incorporating both open source and proprietary elements supported by single or multiple vendors.
To enable a modular SDV platform with exchangeable building blocks, there is a need for standardised
interfaces and abstractions, a development that is actively underway through various industry collaborations.

The automotive industry is just one example. The shift from an electro-mechanical focus to special-purpose
embedded computers to software-driven solutions is found in almost every technology and tool is used at
home and at work. Open source software is the common denominator across all of these solutions.

3.3 Community-driven	open	source	
Two prominent approaches to open source are single-vendor and community-driven open source.
Understanding the distinctions between these models is crucial for navigating the landscape of open source
projects.

Single-vendor open source projects are led by a single organization, with contributions mainly from its
employees. Decision-making is centralized, and resources are allocated by the sponsoring company. In
contrast, community-driven open source projects have decentralized development, with contributions from
diverse individuals and organizations. Governance is meritocratic, and project direction is influenced by
community consensus.

Open source foundations enable vendor-neutral, community-driven open source, which can bring various
advantages also in terms of commercial innovation and adoption:

Communities reduce risks: As an example, looking at Eclipse IoT3, with more than 45 IoT projects across
device, gateway, cloud, security, edge, and other domains, organizations have easy access to all of the
building blocks needed to develop end-to-end IoT solutions. With numerous global leaders in IoT
technologies actively contributing to, and adopting, the open source code, all community members can be
assured they’re incorporating robust and reliable IoT technologies that reflect industry requirements (a
mapping of these technologies to the TRANSACT reference architecture can also be found in D26 (D2.4)
Reference architectures for distributed safety-critical distributed cyber-physical systems v2).

Longevity is assured: Widely adopted open source software is continuously enhanced by developers with a
variety of requirements and skill sets. As a result, the software remains relevant and usable over the long
term. In openly governed projects, there is no single vendor who can choose to end support for it, or take it
in a specific direction. The functionality evolves in a structured way, according to community needs and
interests.

Flexibility is built-in: Open source software based on open specifications enables even higher levels of
interoperability and innovation. Organizations can drive broad adoption of the technologies in which they
invest. And they have the architectural flexibility to easily leverage faster and more advanced technologies
with no need to rewrite their applications. It also keeps competitive pressure high, and is a major factor in
an organization’s ability to quickly enhance its offerings to meet modern demands at scale.

Open innovation reaches industrial scale: Community-driven open source is proven to be the best way to
co-innovate on high-quality, scalable, and sustainable technologies that allow organizations to build better
products faster, accelerate revenues, and create value. Collaborating with competitors on non-differentiating
technologies frees scarce resources to focus on delivering value-added and differentiating features faster.

3 https://iot.eclipse.org/

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 10 of 29

It’s also quickly becoming a leading approach to create new platforms that drive mainstream adoption of
new technologies such as machine learning, edge computing, and automotive technologies.

Value grows with level of involvement: As organizations evolve from users to contributors to leaders of open
source projects, and become more involved in open source communities, the benefits they derive from their
involvement grow well beyond traditional engineering functions. These organizations have greater ability to
translate their open innovation, enhanced capabilities, and open source culture into customer value that
results in profitable growth

3.4 Governance	
“In open source software projects, the rules and customs that define who gets to do what (and how they are
supposed to do it) is called a project’s governance model.”4 In community-driven open source projects,
governance is key because these projects are all about collaboration between different organisations,
companies, and individuals. Open source foundations provide such kind of governance for community-driven
open source projects acting as a neutral third-party and establishing an environment for open collaboration.

3.4.1 The	Eclipse	Development	Process	
The Eclipse Foundation has laid out these rules and customs in the Eclipse Development Process5 (EDP): The
EDP describes the manner in which community-driven open source software is governed at the Eclipse
Foundation. The EDP does not prescribe any particular development methodology; it is more concerned with
the larger-scale aspects of open source project life cycle, including such things as reviews, processes for
running votes and elections, bringing new committers onto a project, etc.

Four basic principles (aka the “open source rules of engagement”) lie at the heart of the EDP:

• Transparency: a project’s discussions, minutes, deliberations, project plans, plans for new features,
and other artifacts are open, public, and easily accessible.

• Openness: the project is open to all. Everyone participates with the same rules; there are no rules to
exclude any potential contributors which include, of course, direct competitors in the marketplace.

• Meritocracy: the more that somebody contributes, the more responsibility they will earn. Leadership
roles are merit-based and earned by peer acclaim.

• Vendor-neutrality: maintaining a level playing field. No vendor is permitted to dominate a project,
and nobody can be excluded from participating in a project based on their employment status.

Another important aspect is intellectual property cleanliness: code produced by an Eclipse project is used by
organisations to build products. These adopters of Eclipse technology need to have some assurance that the
IP they’re basing their products on is clean: the organisation or individuals who claim copyright of the code
are the legitimate copyright holders, and the copyright holders legitimately agree to make the code available
under the license(s) that the project works under.

3.4.2 Creating	a	vendor-neutral,	community-driven	open-source	project	at	the	Eclipse	
Foundation	
The process of creating a project at the Eclipse Foundation follows a strict process (see Figure 1) to implement
the aforementioned open source rules of engagement.

4 https://www.redhat.com/en/blog/understanding-open-source-governance-models
5 https://www.eclipse.org/projects/dev_process/

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 11 of 29

Figure 1: Eclipse project creation process

Eclipse open source projects start with a proposal that is made available to the community for review. During
that phase, which is called community review, everybody in the Eclipse open source community can view the
proposal and provide feedback. A proposal must minimally include a description of the project, a declaration
of scope, and a list of prospective members (project leads and committers) before it is made accessible to
the public for community review.

At the end of the community review period, the project goes into creation review. Creation reviews are an
extension of, and a natural conclusion to, the community review period for a project proposal. As such, the
commitment during the review is to continue to monitor the proposal’s communication channel and answer
any questions related to the project proposal. After this phase, which lasts for 5 business days, the project
resources are provisioned, i.e., the project’s source code can be committed to the respective Eclipse
repository.

After the project code is pushed into the project repository, the project team can create and distribute
milestone builds for the first release. However, all intellectual property must be approved by the Eclipse IP
Team before the project team can issue any official releases. Chapter 6 provides further details on the topics
of IP and license compliance.

The following chapter describes project proposal of Eclipse POOSL.

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 12 of 29

4 Eclipse	POOSL	
Eclipse POOSL was created as an Eclipse Foundation project in October 2021 following the governance and
project creation rules as described in Chapter 3. The following sections are the project proposal that was
committed to the Eclipse Foundation.

4.1 Eclipse	POOSL	Open	Source	Project	Proposal	
4.1.1 Background	
High-tech (embedded) systems are characterized by hardware and software components interacting closely
with each other. The complexity of these systems requires modelling methods that structure and support
the design process. In the early phases of system development, requirements are still unclear and many
decisions have to be taken on the system architecture, the responsibilities, the behaviour and the
interactions between components. For these early phases, there is a lack of tools combining modelling with
analysis at the appropriate abstraction level.

4.1.2 Scope		
Eclipse POOSL (Parallel Object-Oriented Specification Language) provides tools for the editing (both textual
and graphical) and debugging (using the Rotalumis simulator) of POOSL models. Debugging depends on the
Rotalumis6 simulator from Eindhoven University of Technology that is out-of-scope.

4.1.3 Description		
Eclipse POOSL (Parallel Object-Oriented Specification Language)7 and the accompanying tools offer a general
purpose method for describing and simulating (embedded) system architectures for the early evaluation of
key structural and behavioural concepts, requirements and performance. This lightweight modelling and
simulation approach shortens the development time of complex high-tech systems by providing fast insights
into requirements and early design decisions, thereby reducing the risk of expensive iterations during design,
integration and testing.

POOSL targets discrete domains with a notion of time. It provides an intuitive syntax that matches well-
spread approaches such as component-based software development. The semantics is based on formal
techniques, which ensures unambiguous simulation of models, functional verification and performance
analysis.

POOSL is accompanied with user-friendly industry-strength Eclipse-based tools with strong focus on
interactive model development and scalable analysis. Light-weight model development and validation is
supported by an Integrated Development Environment in combination with a scalable simulator. The tools
allow easy integration with external visualization and control tools via sockets and files. Various model
libraries provide common data structures, stochastic distributions and observers for evaluation of, for
example, worst/best case and average case performance properties.

POOSL was originally developed at Eindhoven University of Technology (TU/e) and was adopted by ESI (TNO)
as a standard modelling and analysis tool following its successful application in the high-tech industry.

6 https://www.es.ele.tue.nl/poosl/Tools/rotalumis/
7 https://www.es.ele.tue.nl/premadona/publications/TFGHPV07.pdf

https://www.es.ele.tue.nl/poosl/Tools/rotalumis/
https://www.es.ele.tue.nl/premadona/publications/TFGHPV07.pdf

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 13 of 29

4.1.4 Why	Here?	
Eclipse POOSL is based on several Eclipse modelling projects: EMF, Sirius, Xtext. In addition it is based on the
Eclipse Debug project. The genericity of the POOSL language makes it suitable for modelling and analysing
many concurrent hardware/software systems.

4.1.5 Licenses		
Eclipse Public License 2.0

4.1.6 Project	Scheduling		
The initial contribution is ready to be submitted once the proposal passes.

Incubation release mid-October 2021.

Official release end of December 2021.

4.1.7 Future	Work		
Bugfixes, UI & performance improvements.

Integrate Eclipse TRACE4CPS8

4.2 Eclipse	POOSL	success	story	in	open	source	
Eclipse POOSL is applied and further developed in the scope of TRANSACT, as explained in several
deliverables. Being a community-driven, open source project, it comes with all the potential advantages
explained before. In fact, Eclipse POOSL is being adopted by the company OBEO for commercial up-take. The
company offers professional support and an OBEO enterprise version9 is available (see Figure 2).

Figure 2 POOSL Enterprise Version

8https://projects.eclipse.org/proposals/eclipse-trace4cps
9 https://www.obeosoft.com/en/obeo-enterprise-for-poosl

https://projects.eclipse.org/proposals/eclipse-trace4cps
https://www.obeosoft.com/en/obeo-enterprise-for-poosl

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 14 of 29

5 TRANSACT	open	source	experimentation	environment	
Since the TRANSACT use cases very much focus on industrial applications, we also provide an
experimentation environment for developing TRANSACT solutions in open source. This environment contains
the TRANSACT horizontal demonstrator, which acts as a purely open source implementation of the
TRANSACT architecture, allowing everybody to inspect, use, and extend the implemented concepts.

5.1 Eclipse	Research	Labs	
Eclipse Research Labs is the GitLab environment hosting the open source code of the horizontal
demonstrator. This environment allows to provide experimental open source results without having to
implement the full and strict Eclipse Development Process as described in Section 3.4.1. Nevertheless, it still
introduces the concepts of openness and transparency and allows to already introduce IP-compliance
aspects. It is also a place to share open source results across research projects and as such a tool to
communicate. Figure 3 shows a snapshot of the Eclipse Research Labs and groups for different research
projects including TRANSACT.

Figure 3: Eclipse Research Labs

5.2 Horizontal	 demonstrator:	 A	 TRANSACT	 open	 source	 reference	
implementation	
TRANSACT’s horizontal demonstrator is an experimental platform for the deployment of solutions, scenarios
and technologies to showcase the outcomes of the TRANSACT project. It provides, as well, a setting to work
on scenarios based on concepts, solutions, methods and architectural components not covered by the
industrial use cases.

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 15 of 29

This platform comprises two clusters (cloud and device), both running Kumori Platform10, a PaaS based on
Kubernetes where users can deploy service applications, by specifying a group of microservices and how they
connect to each other. In addition, the cloud cluster includes a Radiatus deployment on top of Kumori.
Radiatus is a Big Data as a Service (BDaaS) platform developed by ITI that operates as a technological enabler
for the provision and management of several open-source tools and technologies related to distributed data
processing. Next, Figure 4 displays the technological ecosystem currently supplied by Radiatus.

Figure 4: Ecosystem of open-source technologies for distributed data processing supplied by Radiatus.

By providing this deployment setting, the horizontal demonstrator establishes the foundations to build
implementations of TRANSACT’s reference architecture that cover fresh scenarios via open-source
technologies. To ensure that an implementation sticks to the reference architecture, it must encompass at
least two computing tiers in the compute continuum. In addition, the (open-source) technologies, solutions,
applications and algorithms deployed need to be mappable to architectural components and building blocks.

TNO has contributed their software to this platform, featuring an open-source demonstrator for 3D image
reconstruction, which runs on top of Kumori Platform and whose cloud layer consumes software services
provided by Radiatus. Figure 5 below depicts the approach adopted for this setting, based on an instantiation
of the reference architecture.

10 Kumori Platform Community, https://gitlab.com/kumori-systems/community/

https://gitlab.com/kumori-systems/community/

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 16 of 29

Figure 5: Mapping of technologies to architectural components in the 3D image reconstruction

demonstrator.

This demonstration spans the device and cloud tiers of the reference architecture, assimilating open-source
technologies that are matched to specific architectural components. Application and domain specific
functions are enclosed in Docker containers that run on Kumori (based on Kubernetes). Value-added services
and functions are provided by technologies (Grafana, Prometheus, Jaeger) that run on Radiatus. Core services
and functions are implemented through Open Telemetry and Linkerd, that run directly on top of Kumori.

By heeding this approach as an example model, further domain specific applications that rely on open-source
software and consume services provided by open-source technologies can be adapted for their deployment
on a distributed setting. This aims to display how TRANSACT’s reference architecture can accommodate novel
scenarios that, by combining different open-source technological options, are realized into running
implementations.

The full technical in-depth description of the horizontal demonstrator can be found in D31 (D5.2) TRANSACT
basic horizontal demonstrator.

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 17 of 29

6 Open	source	licenses	and	IP	compliance	
This chapter provides an introduction to open source license compliance and reports on an experimental
deployment to test license compliance processes for managing large set of projects.

6.1.1 Open	source	license	spectrum	
Open source licenses give adopters and developers permission to use, modify, and distribute the open source
software freely, under the terms laid out in the specific license. The Open Source Initiative11 provides a very
good definition of Open Source Software (OSS) and defines it in 10 commandments12:

1. Free redistribution: The license shall not restrict any party from selling or giving away the software
as a component of an aggregate software distribution containing programs from several different
sources. The license shall not require a royalty or other fee for such sale.

2. Include source code: The program must include source code, and must allow distribution in source
code as well as compiled form.

3. Modifications and derived works: The license must allow modifications and derived works, and must
allow them to be distributed under the same terms as the license of the original software.

4. Integrity of author’s source code: The license may restrict source-code from being distributed in
modified form only if the license allows the distribution of "patch files" with the source code for the
purpose of modifying the program at build time. The license must explicitly permit distribution of
software built from modified source code. The license may require derived works to carry a different
name or version number from the original software.

5. No discrimination against person and groups: The license must not discriminate against any person
or group of persons.

6. No discrimination against fields of endeavour: The license must not restrict anyone from making
use of the program in a specific field of endeavour.

7. Distribution of license: The rights attached to the program must apply to all to whom the program
is redistributed without the need for execution of an additional license by those parties.

8. License not specific to a product: The rights attached to the program must not depend on the
program's being part of a particular software distribution.

9. License not restricting other software: The license must not place restrictions on other software that
is distributed along with the licensed software.

10. License technology neutral: No provision of the license may be predicated on any individual
technology or style of interface.

There is a huge variety of open source licenses, with different constraints and compatibility. Some licenses
can be mixed, while others are not compatible together; it also depends on the type of usage (e.g., sources
included in the build, or simply downloaded as binaries).

As an example, some licenses can work with others in 3rd party dependencies (e.g., it is ok to add a LGPL
dependency in an EPL project), while others simply cannot: it is not ok to add a GPL dependency since GPL

11 https://opensource.org
12 https://opensource.org/osd-annotated

https://opensource.org/
https://opensource.org/osd-annotated

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 18 of 29

forbids it. The license spectrum ranges from permissive licenses (e.g., MIT, BSD, Apache) to proprietary
licenses which typically don’t allow modification or distribution of the software (see Figure 6).

Figure 6: The software licenses spectrum

In between, there are the “Copyleft Licenses”. In contrast to permissive licenses, these are considered
protective or reciprocal as they impose more constraints on the users or integrators of the software. Within
this share of the spectrum, we find both strong (e.g., GPL, AGPL) and weak (e.g., EPL, MPL) copyleft licenses.
Both allow free distribution and modification of the software. The devil is in the details: using strong copyleft
licensed code usually forces the licensee to put their own code under that same license whereas weak
copyleft requires to only publish changes to the original code under the original license. In other words, weak
copyleft licenses allow free distribution and modification of the software (also in proprietary products) but
require that changes made to the original code stay under the original license. Thus, weak copyleft licenses
foster collaboration and innovation by ensuring that improvements to the open source project stay open
while still allowing its use in commercial products or providing added-value services on top.

6.1.2 Open	source	license	compliance	and	large-scale	distributed	systems	
When using or extending open-source software one has to adhere to the terms laid out by the particular
license. That is where open-source license compliance comes into play. License compliance in software
projects is a complex problem and involves several aspects which bring a lot of uncertainty, e.g., availability
of license information in structured format or grey areas in the assessment of compatibility between different
licenses. This is even more the case when considering the strict requirements of safety- and security-sensitive
domains.

When software becomes increasingly distributed also license compliance becomes more complex. Every
piece of software we rely on may come with dependencies each of which may come with dependencies and
so on and so forth. Keeping an overview of the state of license compliance of large-scale distributed software
systems is also not an easy task. Identifying, and fetching all dependencies, can be complex. Each project may
use different build tools, with different formats to store the dependencies. Each dependency in turn can use
a different technology and build tool, and so recursively. And modern software projects have a lot of
dependencies. So clearly, tool-support is needed to perform license compliance checks. A variety of tools
exist from very simple ones to powerful frameworks covering many aspects. Currently, at the Eclipse
Foundation we provide a command line tool to committers which allows them to vet the third-party content
of a project. This Eclipse Dash License Tool is available under EPL-2.0 license and described in Section 6.1.3.

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 19 of 29

Such tool, typically requires pro-active behaviour by the committer/developer. He has to run the tool or
integrate it into his project(s)’ build processes. In the scope of TRANSACT a different approach was tested,
i.e., setting up a more powerful tool to keep track of the IP issues of many projects. This setup is described in
Section 6.1.4.

6.1.3 Eclipse	Dash	License	Tool	
The Eclipse Dash License Tool13 (short: Dash License) is a command line tool that can be used by developers
(or anybody else) to gain information about the third part licenses in their open source project. The tool itself
does not identify dependencies (at least not in general). Rather, the value it provides starts after the list of
dependencies are identified by build tools. That is, the tool works on the list of dependencies with which it is
provided.

The tool is only as good as the input with which it is provided, and it is up to the committer to ensure that
the input provided is correct. That means, dependencies that are not automatically discovered by build tools
must be vetted manually. The CLI accepts a flat file with each line containing a content identifier
(ClearlyDefined id, Maven coordinates, or NPM identifier); it also supports a small number of file formats
including package-lock.json or yarn.lock files. A Maven plugin that is capable of processing a dependency list
extracted from a pom.xml file is also provided.

It can generate a file that contains CSV content with one line for each line of input, mapping a package to a
license along with whether that content is approved for use by an Eclipse project or restricted, meaning that
this content would need to be inspected further.

The current implementation uses two sources for license information. The first source is an Eclipse
Foundation service that leverages data that the Eclipse Foundation's IP Team has collected over the years
(and continues to collect). When that source does not have information for a piece of content,
ClearlyDefined's service is used.

The idea was to have some code that can be used to check the licenses of content, but write it in a manner
that would make it easy to generate, for example, a Maven plug-in. The main focus, however, has been
making this work as a CLI so that it can be used to sort out licenses for Maven, package-lock.json, yarn.lock,
etc.

Figure 7 shows how the process of vetting third-party content with the Dash License Tool. Once the list of
dependencies has been created in the proper format, the tool is very straightforward. It takes the file, checks
each line against its sources (i.e. the Eclipse DB and ClearlyDefined) and provides the respective output, i.e.
if a library is approved or needs further investigation.

13 https://github.com/eclipse/dash-licenses

https://github.com/eclipse/dash-licenses

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 20 of 29

Figure 7: Vetting third-party content with Dash License

6.1.4 OSS	Review	Toolkit	for	continuous	license	compliance	
In the scope of TRANSACT the applicability of ORT14 (OSS Review Toolkit) was tested to find out if a more
feature-rich framework (compared to the Dash License Tool) can be employed to continuously perform
license compliance checks for a larger number of projects/repositories.

6.1.4.1 Requirements	
For the experiment, we identified the following requirements (based on expert interviews with the Eclipse
Management Organisation Team):

Functional requirements:

• List licenses and IP in project code and third-party dependencies.

• Check license compatibility (according to Eclipse's rules) and display those that cannot be
automatically validated.

• Reuse wisdom from IPZilla.

• Generate Bill of Materials.

• Ease the work of the legal department and automate as much as possible the IP checking process,
leaving only warnings/errors when unsure. When correct, provide a link to the justification.

Non-functional requirements:

• Do not interfere with existing code or build processes: simply clone code and run the analysis.

• Be technology-agnostic, regarding both the code and the build system.

• Rely on standards (like SPDX) and trusted external data sources (like clearlydefined.io, and the Eclipse
Foundation’s own collection of intellectual property data) as much as possible.

• Can be easily executed on any repository (i.e. have a simple script to start the whole process).

The detailed list of these requirements can be found in Appendix A - Requirements for a continuous
compliance tool.

14 https://oss-review-toolkit.org/ort/

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 21 of 29

The OSS Review Toolkit was chosen as test candidate because it provides the following features:

• It can use different scanners, allowing us to try and select the best for our usage: ScanCode from
NexB is the default for scanning, FOSSID15, Askalono16, lc17, Licensee18, SCANOSS19

• It provides a resolution mechanism to describe why some violations are accepted: resolutions.yml.
This helps fix corner-cases and exceptions – when hosting a large amount of open source projects
with different technologies, domains and constraints, exceptions are plenty.

• It provides a mechanism to manage missing / incomplete package metadata: curations.yml. This is
required to implement our own IP knowledge base and reuse efficiently the years of IP clearance
done by the foundation’s lawyers.

• It provides a mechanism for licenses categorisation and custom policies. This is required in the case
of the Eclipse Foundation to implement the custom IP Policy, which differs from one organisation to
the other.

• ORT has several publishers, including Bill of Materials, Notices, and a webapp. This enables us to:

o Automatically generate the due documentation (notices) to be legally compliant.

o Provide different ways to display the interesting data, depending on people and projects.
Some prefer a text file, while some others will go for the feature-rich WebApp HTML export.

o Anticipate security-related questions through SBOMs. Recent events in the field, like the
SolarWind20 hack, demonstrate how the supply chain is becoming increasingly necessary.

It should be noted that other tools like Fossology21 and SW36022 have a different scope, and are more
oriented towards Software Composition Analysis. The IP & License checking stands as an added feature, with
less abilities than a dedicated tool like ORT.

6.1.4.2 Setup	and	configuration	
In the following we describe the initial setup of our ORT instance. We have scripts to build our custom list of
licenses, and to rebuild regularly our knowledge base from our different sources (Eclipse’s own IP knowledge
base, plus other instances like clearlydefined23). We then execute ORT with this configuration, and publish its
results alongside a custom, dedicated static website.

15 https://fossid.com
16 https://github.com/amzn/askalono
17 https://github.com/boyter/lc
18 https://github.com/licensee/licensee
19 https://www.scanoss.com
20 https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
21 https://www.fossology.org/
22 https://github.com/eclipse-sw360
23 https://clearlydefined.io

https://fossid.com/
https://github.com/amzn/askalono
https://github.com/boyter/lc
https://github.com/licensee/licensee
https://www.scanoss.com/
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.fossology.org/
https://github.com/eclipse-sw360
https://clearlydefined.io/

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 22 of 29

Figure 8: Overview of ORT installation

Figure 8 shows the overview of the ORT installation.

Curations correct invalid or missing package metadata, configure a licenses mapping, and set the concluded
license for packages. We've conducted a few tests on our instance and eventually settled down on this
format:

- id: "NPM::argparse:1.0.10"

 curations:

 comment: "Manually checked issue, it is a false-positive. License
available at https://www.npmjs.com/package/argparse/v/1.0.10"

 concluded_license: "MIT"

As of now curations are automatically exported from the IPZilla API thanks to a new entrypoint:

• http://www.eclipse.org/projects/services/curations.yml.php

Evaluator rules allow to define precisely what licenses are approved in each situation. They are written in
kotlin, thus enabling a wide range of different executions depending on the many possible cases. This wisdom
is captured into the evaluator.rules.kts file, publicly available in our repository:

• https://gitlab.eclipse.org/eclipsefdn/emo-team/eclipsefdn-ort/-
/blob/main/conf/evaluator.rules.kts

http://www.eclipse.org/projects/services/curations.yml.php
https://gitlab.eclipse.org/eclipsefdn/emo-team/eclipsefdn-ort/-/blob/main/conf/evaluator.rules.kts
https://gitlab.eclipse.org/eclipsefdn/emo-team/eclipsefdn-ort/-/blob/main/conf/evaluator.rules.kts

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 23 of 29

6.1.4.3 Web	interface	&	reports	
ORT generates a number of reports for different usages. However, we wanted to provide a way to quickly
identify important violations for each project and repository. Therefore, we wrote a script to automatically
generate a static website from all the runs executed on projects, to allow users to quickly go to their projects
and repositories and navigate the various outputs and generated reports. We also created a view on the
errors and violations at a global level, to help us tackle the most recurring issues.

The static website is automatically published after each run. Figure 9 is the landing page and shows the list
of all IP-checked projects and a timestamp of the latest run per project.

Figure 9: List of all checked projects

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 24 of 29

Figure 10: Main page of an ORT run

Figure 10 shows the overview page of an ORT scan for the Eclipse POOSL project. It allows the user to view
different results, such as the license compliance report in WebApp or static format or SBOMs in different
formats. When going to the WebApp report the user can have a closer look at the dependencies and potential
compliance issues. It should be noted that the violations indicated in Figure 11 are mainly due to further
manual configuration that needs to be done.

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 25 of 29

Figure 11: ORT WebApp report

6.1.5 Assessment	
At the end of the prototyping stage, we come to the conclusion that a feature-rich tool for continuous license-
compliance checks such as ORT has the potential to ease the task of vetting third-party content for a large
number of projects and thus being applicable to large-scale distributed systems. ORT itself met most of the
requirements to a sufficient level. The tool allows to get a comprehensive overview of the state of third-party
license compliance from a general overview down to project-specific level. The visual interface helps to get
a good overview and dig deeper into specific issues. Once set up correctly, runs were triggered automatically
without the need for manual intervention. It was also able to create reports as well as SBOMs.

Nevertheless, at the end of the prototyping stage of this experiment it became clear that substantial effort
would be required to turn the experiment into a long-lasting, maintainable and stable installation. This goes
for maintaining the installation but also for handling and tweaking the rules for the myriad of corner cases
and grey areas when assessing the compatibility of licenses.

In conclusion, the framework provides great potential for managing IP of a large number of projects and
provides very useful interfaces for both developers and IP/license experts. To leverage this potential,
respective resources are required.

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 26 of 29

7 Conclusion	
This deliverable provided an overview of the open-source perspective on the TRANSACT project from
different angles:

• Eclipse POOSL as a success story of an open source project that started in research, was used and
further developed in TRANSACT and commercially adopted.

• The open-source horizontal demonstrator made available in Eclipse Research Labs environment to
allow experimentation with a TRANSACT reference implementation in a truly open and accessible
way.

• And a view on the topic of open source license compliance which plays an important role in
TRANSACT domains that are heavily regulated by safety- and security-requirements but at the same
time are already deeply involved with open source developments.

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 27 of 29

8 Appendix	A	-	Requirements	for	a	continuous	compliance	tool	

ID 1 Priority High Type F

Summary List licenses and IP in project code and third-party dependencies.

Description The tool should provide a human-readable list of the licenses in the project code and third-
party dependencies.

Fit criterion Human-readable list of licenses is available

Assessment YES. ORT provides various reports incl. SBOM and NOTICE, which are human-readable.

ID 2 Priority High Type F

Summary Check license compatibility and display those that cannot be automatically validated.

Description The tool should be able to check if a license is compatible with Eclipse’s rules and display to
the end user the ones that can’t be automatically validated.

Eclipse approved licenses: https://www.eclipse.org/legal/licenses.php#approved

Fit criterion Problematic licenses can be shown

Assessment YES. Problematic licenses and explanations are provided. PARTIALLY: Sometimes rules for
automatic validation were a bit too conservative for our needs and there were too many
false positives.

ID 3 Priority High Type F

Summary Reuse wisdom from the clearly-defined initiative.

Description The tool should be able to query the clearlydefined service to retrieve existing curations and
clearance from known, collaborative databases.

Fit criterion Clearlydefined data can be used

https://www.eclipse.org/legal/licenses.php#approved

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 28 of 29

Assessment YES. Clearlydefined data could be leveraged.

ID 4 Priority High Type F

Summary Generate Bill of Materials

Description The tool should be able to generate a software bill of materials (SBOM) in SPDX format.

Fit criterion SBOM in SPDX is generated

Assessment YES. SBOMs are generated in SPDX and CycloneDS formats.

ID 5 Priority Medium Type NF

Summary Do not interfere with existing code or build processes: simply clone code and run the
analysis.

Description We don’t want to interfere with projects. Only committers and contributors are allowed to
change their repositories.

Fit criterion No need to add files to the analysed repository to run the analysis.

Assessment YES.

ID 6 Priority Medium Type NF

Summary Be technology-agnostic, regarding both the code and the build system.

Description There are a huge variety of technologies in the open source projects hosted at the
foundation. As an example IOT-related projects often propose reference implementations
in various languages to their standardised APIs. Take care of as many build tools as possible.

Fit criterion Work with these build systems: Maven, NPM, GoDep, Gradle, Bower, Yarn, Composer,
Conan, Python pip, Cargo.

D32 (D6.5) Open source project proposal

Version Nature / Level Date Page

v1.0 R / PU 26/04/2024 29 of 29

Assessment YES

ID 7 Priority High Type NF

Summary Rely on standards (like SPDX) to identify licenses.

Description All Eclipse projects should use SPDX license names, as it has become a established standard.
This enables our analysis to easily and accurately detect licenses, and the end users to
quickly and safely know what they get.

Fit criterion The tool should recognise and use SPDX identifiers in files.

Assessment YES

ID 8 Priority Medium Type NF

Summary Can be easily executed on any repository (i.e. have a simple script to start the whole
process).

Description We need to be able to fully automate the analysis process. With hundreds of open source
projects (and with many repositories per projects) the analysis cannot be done manually.

Fit criterion The tool enables automation and requires no human interaction when executed.

Assessment YES. Was tested with regularly scheduled scans.

